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The Abelian sandpile model was introduced by Bak, Tang and Wiesenfeld in
1987, as a prototypical model to illustrate the basic concepts of self-organized
criticality. The model has generated as a lot of interest, and many variations
of the model have been studied over the last two decades.

The lasting interest in the model comes from the fact that it is one of the
simplest models showing self-organized criticality, it is easy to define, and
seems to be exactly soluble. It has a an interesting Abelian group structure,
which allows the exact calculation of several properties of the critical steady
state, without too much trouble. For example, one can exactly characterize
the probability of occurence of different configurations in the steady state,
and determine the spectrum of relaxation times fairly easily, using the abelian
group structure of the model, in all dimensions.

Other properties of the model are not so easy to determine. In particular, a
major focus of interest has been the determination of critical exponents that
characterize the power-law tail of the distribution of the size of avalanches
in the model, and despite a lot of theoretical and numerical effort directed
towards this end in the last twenty years, these are still not known exactly,
or with good precision numerically, for the original BTW model defined on
the square lattice.

The growth and decay of avalanches depends, in a complicated way, on the
correlations in the heights at different sites in the critical steady state. The
latter are quantified by the different n-point correlation functions of heights.
The simplest of the correlation functions is the 1-point correlation function.
which is specified by P (j), the probabilities that a randomly picked site will
have height j [ j = 1 to 4, for the abelian sandpile model on the square
lattice].

The calculation of P (1) was first done by Majumdar and Dhar [1]. It uses
the one-to-one correspondence between recurrent configurations of the sand-
pile, and spanning trees. Priezzhev [2] extended this technique to determine
P (2), P (3) and P (4). However, these calculations are rather complicated, and
Priezzhev’s paper only gave details of calculation of P (2). This is expressed
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as a lattice sum over all ~R of a determinant of a 4×4 matrix whose elements
are the lattice propagators of the type G(~R + ~eα), where G(~R) is the lattice

propagator at separation ~R [ Its Fourier transform is 1/(2− coskx − cosky)],
and ~eα are lattice vectors.

Priezzhev did not succeed in evaluating this sum in a closed form, though
he did simplify the result a bit more, with the final expression being a single
multidimensional integral that had to be evaluated numerically. It seemed
hard to push the technique much further, and that is where the matters stood
for a while.

Jeng et al follow Priezzhev’s general technique of graphical enumeration of
classes of graphs using the equivalence to spanning trees, but they are able
to guess the exact values of P(j) from their formulas. They find that
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These formulas for P (j)’s are stated as conjectures by Jeng et al, as the
expressions they find for these involve a definite integral J2 of the type
∫ π
0
dθ

∫ π
0
dφF (θ, φ), with the integrand F being a rather complicated func-

tion of sines and cosines of linear combinations of θ and φ. This integral
has been evaluated by them numerically, and has a value 0.5 to some twelve
digit accuracy. If one can prove that the integral is exactly 1/2, then the
conjectured results follow.

The existence of these simple formulas for the height probabilities suggests
that there might also be a simpler derivation, which will constitute a major
advance towards answering other outstanding questions related to this model.

Jeng et al go beyond the calculation of 1-point functions. They have also
calculated 2-point and higher correlation functions of heights. One can define
a field variable

hi(~x) = δ(z~x, i) − P (i). (5)

where δ is the Kronecker δ-function. The expectation value of this field is
zero by construction, and multipoint correlation functions give the multi-site
joint probabilities of different heights. It was known that the field h1(~x) has
correlations 〈h1(~x)h1(~x′)〉 ∼ |~x − ~x′|−4. Jeng et al calculate explicitly the
correlation functions of hi, and find that in general

〈hi(~x)hj(~x′)〉 ≃
1

R4
[aiaj log2R + C(ai + aj) logR +Dij] (6)
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where R = |~x − ~x′|, and explicit values of the constants ai and C and Dij

have been determined. It thus appears, that in the continuum limit, all the
four fields {hi} with i = 1 to 4 can be described as linear combinations of
only two fields φ(~x) and ψ(~x), with

hi(~x) = αiφ(~x) + βiψ(~x), (7)

where {αi, βi} are related to the constants {ai, Dij} that appeared in Eq.(6),
and φ(~x) is a field of in a conformal field theory with central charge −2, and
the ψ(~x) field is the “logarithmic partner” of φ(~x). In the logarithmic con-
formal field theory [3], the correlation function 〈φ(~x)φ(~x′)〉 varies as simple
power law |~x − ~x′|−4, but correlation functions involving ψ field also have
finite degree polynomials of log |~x− ~x′| multiplying the power law decay.

The powerful techniques of conformal field theory constrain strongly, and
almost determine fully, the functional forms of the n-point correlation func-
tions of the sandpile. Moreover, as the sandpile model (equivalently, spanning
trees) provides a simple statistical mechanical realization of the rather ab-
stract theoretical structure of the logarithmic conformal field theory, it is
reasonable to expect that further study of this connection will help under-
stand better the latter as well.
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