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Universality of Random Close Packing?...
...or: is it time for a new Kepler conjecture?

In 1611 Kepler proposed that the densest packing of spheres could be achieved
by stacking close-packed planes of spheres. In such a packing, the spheres
occupy π/

√
18 ≈74.05% of space. The Kepler conjecture was (almost cer-

tainly) proved in 1998 by Thomas Hales. When we pour a large number of
equal-sized spheres in a container and shake them down, we do not obtain
the Kepler packing. Rather a disordered structure forms in which the spheres
occupy approximately 64% of the available space. It has long been debated
if this density of “random close packing” (RCP) is well defined. The Bible
seems to suggest it is: “Give, and it will be given to you. A good measure,
pressed down, shaken together and running over, will be poured into your
lap” (Luke 6:38) - but, of course, we should not use the Bible as a source
of scientific information (otherwise we would have to accept that π=3). The
quantitative study of random close packing seems to have started with J.D.
Bernal’s experiments on the packing of ball bearings [1]. His experiments
(and those of many others) suggested that it is impossible to compress dis-
ordered sphere packings beyond a volume fraction of approximately 64%.
However, this observation does not necessarily imply that there is a well-
defined density of random close packing. It could just as well be that the
rate at which the density of a disordered hard-sphere packing increases with
“shaking” becomes very slow around a volume fraction 64% – very slow, but
not zero. If that were the case, RCP would not have a clear mechanical defi-
nition. Indeed, in 2000, Torquato, Truskett and Debenedetti [2] argued that
states with a density above 64% can always be obtained by increasing the
local order. This observation implies that the “mechanical” route to random
close packing is ill defined. At high-enough densities, ordered structures are
always favored because they occupy a larger fraction of configuration space
than disordered structures.

A recent preprint by Liu and Kamien [5] makes it plausible that what counts
is the number of distinct, disordered states - not their volume in configuration
space. Can we count the number of such states? The answer is: Not quite
yet, but the approach of ref. [5] seems to point the way. The basic idea
(see [3, 4]) is the following: start with a random configuration of N ideal-gas
particles in a volume V. Now switch on a soft repulsive interaction between
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the particles with a finite range σ (σ is equal to the diameter of the hard
spheres that we consider). For instance:

v(r) = (ε/α) (1 − (r/σ))α for r ≤ σ
= 0 for r > σ

where ε is an arbitrary positive number that sets the energy scale and α is
a positive exponent (usually between 3/2 and 5/2 – the precise value should
be irrelevant). For every ideal-gas configuration, we can now determine the
nearest minimum or zero of the potential energy. It is convenient to use scaled
coordinates (s) to characterize the configurations of an ideal gas in (say) a
cubic box of diameter L, in such a way that the real Cartesian coordinate xi

of particle i is equal to sx(i)L, with 0 ≤ sx < 1.

Figure 1: Sketch to illustrate that at the volume fraction of random close packing
(φRCP ≈ 0.64), the overwhelming majority of allowed inherent structures dis-
appear. The number of allowed crystalline structures (including structures with
defects) is much smaller, and an even smaller number persists all the way up to
the density of regular close packing (φcp).

At low densities, the states with zero potential energy will occupy a finite
fraction of configuration space. However, as we decrease the volume of the
system (by decreasing L), the nearest local energy minima (the “inherent
structures”, to use of language of ref. [6]) will one-by-one take on a finite
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value of the potential energy. For every set of scaled coordinates, there is
a unique density where this first happens. If we consider the limit ε → ∞
(hard spheres), then this density is the point where this specific inherent
structure is no longer allowed. Note that every such inherent structure has
its own “basin of attraction” in the space of scaled coordinates. The size
of this basin of attraction may depend on the parameters of the soft repul-
sive potential but not the number of such basins. The key observation in
refs. [3, 5] is that the simulations show that the rate at which allowed inher-
ent structures disappear with increasing density, has a sharp maximum at a
particular density. Moreover, this peak becomes sharper as the system size
becomes larger. In the thermodynamic limit, the decrease of allowed inher-
ent structures appears to be discontinuous at a hard-sphere volume fraction
that happens to be very close to existing estimates of the density of random
close packing (see figure 1). Note that this analysis is not affected by the
fact that allowed states exist in the crystal at densities above RCP, because
the number of distinct inherent structures in the crystal is very much smaller
than of those in the disordered phase (up to RCP) – the fact that, close to
the density of RCP, the total phase-space volume of the crystalline states is
much larger than that of disordered states is irrelevant for the determination
of RCP. However, it does imply that the entropy of the crystal at φRCP is
much higher than that of the disordered phase – that is why hard spheres
freeze above a certain volume fraction (49.4%).

The crucial point to note is that the counting of the rate of disappearance of
the number of distinct, allowed inherent structures provides an unambiguous
definition of RCP – there is no longer any need to specify the degree of
“disorder” of the states to disentangle ordered and disordered packings. The
fact that a sharp transition appears to exist implies that the evaluation of the
density of RCP is now becoming a deep theoretical problem - it is a property
of three-dimensional space. Finding an analytical expression for the density
of RCP could become the modern sequel to the Kepler problem.
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