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The idea of quantum computing and ongoing search for a viable implementation of a
quantum bit brought dynamics of individual spins in solids into the spotlight. A single
electron in a quantum dot provides an interesting example of an isolated spin. The trapped
electron can be prepared in a desired spin state. At a later time, its state can be read out
by means of electron transport (see Ref. [14] in the preprint of Gang Chen et al).

A quantum dot may appear as a sterile environment allowing a coherent evolution of
electron spin. There is one nuisance, however. The material of choice for hosting a quantum
dot is GaAs, in which the density of nuclear spins is essentially equal to the atomic density.
The electron spin in a quantum dot is exposed to the hyperfine interaction with the nuclei.
If all the nuclear spins were polarized, the effective field acting on electron spin would
be around 3T. In reality, nuclear spins in the “virgin” state are fully randomized. The
number of these spins N in the volume of a quantum dot is about N ∼ 106, so electron
spin experiences an effective field Beff ∼ 30 Oe.

Experiments with a quantum dot allow one to cycle electrons through it at certain
pace, thus sampling different representatives of the ensemble of nuclear spin configurations.
Electron spin evolution can be measured for each initial state of the nuclear spins. Upon
proper averaging over the cycles, one may find the electron spin correlation function, F (t) =

〈~S(t) · ~S(0)〉/S(S + 1). Here 〈. . . 〉 means averaging over the random distribution of the

nuclear spins ~Ii which interact with the electron spin. If one replaces the effect of nuclear
spins by a static field Beff and then average over its directions, then F (t) would display a
decay from F (0) = 1 to a finite value F (t → ∞) = 1/3. The time scale for that evolution
is ∝ B−1

eff
. The crude estimate yielding a finite value of F (t→ ∞) completely neglects the

back-action of the electron spin on the nuclei. In fact, the nuclear spins also precess due
to their interaction with the electron spin (we neglect here the dipole-dipole interactions
between the nuclear spins). Would that interaction drive F (t→ ∞) to zero?

This question did attract a considerable interest lately not only in relation with ex-
periments, but also because of the beauty of the model describing the corresponding spin
system. In the so-called “central spin” problem, a single electron spin S interacts with a
bunch of N nuclear spins Ii,

H =
∑

i

ai
~Ii · ~S,

and the exchange constants ai are arbitrary. In reality, these constants vary with the am-
plitude of the electron wave function confined to a quantum dot, ai ∝ |ψ(~ri)|2. This model
belongs to a broader class of integrable systems (“Gaudin magnets”) discovered by M.
Gaudin [J. Phys. (Paris) 37 1087 (1976)]. So far, there was little success in exploiting the
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rich mathematical structure of the model in order to extract information about correlation
function F (t).

Because of the vastly different scales of effective fields exerted on the electron spin
(∼ a

√
N) and on a typical nuclear spin (∼ a), one may argue in favor of the described

above “Beff–approximation”. This mismatch of the effective fields prohibits a direct spin-
flip process involving electron and a single nuclear spin. Perhaps this heuristic argument
has certain value, as there is no evidence for an exponential decay of function F (t) down
to zero. Nevertheless, there are more complex processes involving many nuclear spins
which may affect the dynamics of the electron spin and eventually drive F (t) to zero at
t→ ∞. The preprint of Chen et al presents a compelling argument in favor of a very slow
decay, F (t) ∝ | ln t|−α. This kind of behavior was observed earlier in numerical simulations
(Ref. [13] in the preprint). Chen et al associate the slow dynamics of the electron spin with
its interaction with the most remote nuclear spins, sitting in the “tail” of the electron wave
function ψ. The exponent α is not universal and depends on the asymptotic behavior of
ψ at large r (the periphery of the dot). For a two-dimensional dot, α = 2 in the case of
exponentially decaying wave function.
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