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The Uemura relation, Tc ∝ ρs, although fitting quite well in the underdoped region of high Tc materials, fails 
badly for optimal and over doped materials. Though it is often discussed in the context of  "ordinary" 
superconductors, it can hardly hold there since ρs is impurity sensitive and Tc is not; still less can it possibly hold 
for c-axis superfluidity, since ρs (c) varies wildly. Where Uemura fits it seems to be compatible with the Lee-
Wen idea that superconductivity is destroyed by thermal excitation of quasiparticles. 
 
Homes et al seem to have found a much more nearly universal relation, fitting as well as Uemura where the latter 
works, and covering also the higher dopings, and, rather amazingly, the c-axis electrodynamics as well as that on 
the ab plane. They achieve this miracle by dividing the superfluid density by the DC conductivity at the transition 
temperature Tc, usually obtained from extrapolation of the infrared conductivity. (This step isn't questionable; 
direct measurements agree when they exist.) A miracle, to my mind, is that this DC conductivity seems to be 
constant with doping x in the underdoped regime, even though ρs is fairly accurately proportional to x, and even 
though the resistivity has no simple variation with T. 
 
The quotient { (superfluid density)/conductivity}  defines a relaxation rate 1/τ, obtained by assuming that the 
superfluid density contains all the mobile electrons, and that they all relax at the same rate 1/τ. More formally, 
this is the result obtained if the conductivity is described by the simplest bubble diagram without vertex 
corrections, using renormalized single-particle propagators G(k,ω) and assuming that the IP of the single-particle 
self-energy is h/τ in the normal state, but the self-energy is purely real in the superconductor. This also amounts 
to saying that all of the resistivity comes from quasiparticle decay due to strong electron-electron interaction, the 
familiar basic assumption of either the marginal Fermi-Liquid or the non-FL theories of transport in the normal 
state--see my book. If this is the case it is interesting, if not original, that the c-axis τ, defined this way, should be 
the same as that defined from the ab plane--as pointed out long ago by N Kumar and collaborator. 
 
What is new, and very germane, is that the scaling law then claims that kB Tc = (const) x h/τ. If my estimate is 
right the numerical factor is 1.4 if one uses h-stroke. This is non-trivial, and must tell us something fairly 
fundamental about the mechanism for Tc. 
 
What must be a coincidence gives Homes et al an equivalent, and actually well-known, relationship in the 
extreme dirty limit of BCS superconductors, though they note that the coefficient is about a factor of 2 different 
(It's to be found in Tinkham's book, I believe.) But it fails to hold for the clean limit by many orders of 
magnitude, which must be true since Tc and ρs are dirt-independent and resistivity not--and of course the 
mechanism depends not at all on dirt. 
 
There are two accepted kinds of superconducting transition, which until now have been assumed to be the 
extremes of a one-dimensional manifold where the parameter is the ratio of pair binding energy (the "gap", more 
or less) to the single particle kinetic energy Ef. Neither of these obeys anything like Homes' relation (taking the 
clean limit as more meaningful for the BCS case). For a Bose liquid of bound pairs, Tc is the degeneracy 
temperature, proportional to n in one dimension, and h/τ would be n to the 3/2 power for particle collisions, n to 
the 1/2 for dirt. 
 
I conjecture that the high Tc transition is of a qualitatively different type and does not belong in the one-
dimensional manifold described above. This Tc occurs when the quasiparticles break apart: it is the 
deconfinement transition, possibly deconfinement of separate charge and spin excitations; but in any case 
condensation takes place when the electron as a quasiparticle first begins to have an energy definition 
comparable to its mean energy ∆E=kBT.  


