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In 1970, Efimov (Phys. Lett. B33, 563 (1970)) pointed out the remarkable
fact that even when a two-body potential is so weak that it can not accom-
modate a two-body bound state, if it is close to resonance, (i.e. a state in the
continuum is about to come down to form a bound state), such potential can
generate infinitely many three-body bound states with energy −|E

n
| accu-

mulating toward the continuum, (i.e. E = 0), with ratio |E
n+1/En

| = e2πso ,
s

o
= 1.00624. This effect is often liken to the Borromean rings (see figure),

which is a set of three interlocking rings such that if one is removed, then
the other two will fall apart. The formation of this stable structure requires
the cooperation of all three rings.

Although the Efimov effect has been a fascination among nuclear and atomic
physicists for decades, experimental confirmation has been lacking because
it is hard to find particles whose interactions are close to resonance. The
situation, however, changes dramatically in recent years. Due to the recent
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realization that atomic interactions can be controlled using Feshbach res-
onance, one now can tune the two-body potential to resonance by simply
changing a background magnetic field. In addition, Hammer and Braaten
have pointed out recently (Phys. Rev. A70, 042706 (2004)) that the energy
spectrum of the Efimov states can lead to a periodic variation in three-body
decay rate. Not only can this variation be used to identify Efimov states,
but also to locate magnetic fields at which three-body decay rates are small,
which is very important for producing stable quantum gases. Efimov effect
was finally found by Rudi Grimms group at Innsbruck (T. Kraemer et.al.
Nature 440, 315 (2006)), and that the prediction of Hammer and Braaten
was well verified.

I shall not discuss the discovery of Efimov states because it was covered
very nicely by Charles Day in Search and Discovery of Physics Today, April
2006. Instead, I would like to point out an interesting but less emphasized
connection between Efimov effect and condensed matter physics, i.e. that it
is an example of the Renormalization Group limit cycle. In his famous 1971
paper (Phys. Rev. D3, 1818 (1971)) on renormalization group (RG), Ken
Wilson pointed out that the RG equations can have solutions other than
fixed points, such as limit cycles. In condensed matter physics, however,
there have been very few examples of RG cycles. It is therefore interesting
to find out more examples of this phenomenon. That the Efimov effect is a
RG limit cycle was realized quite sometime ago by S. Albeverio et.al. (Phys.

Lett. 83A, 105, (1981)), and has recently been studied extensively by S.D.
Glazek and K.G.Wilson (Phys. Rev. Lett. 89, 230401 (2002), ibid 92,
139901 (2004), Phys. Rev. B69, 094304 (2004)).

The basic physics of the Efimov effect is that when the two-body potential is
at resonance, if one averages out one of particles in this three-body system,
the effective interaction between the two remaining particles is an attractive
1/r2 potential, with a cutoff r

o
that depends on short range details of the

two-body potential. The Schrodinger equation of the remaining two particles
(with distance r) is

h̄2

2m
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o
+ 1/4

r2

]

f(r) = Ef(r), (1)

with the boundary condition [(r∂
r
f)/f ]

ro
= G(r

o
), where G(r

o
) is the loga-

rithmic derivative specifying the behavior at short distance.
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Since 1/r2 scales as the kinetic energy, the Schrodinger equation is scale
invariant. It is this invariance that leads to infinitely many bound states
accumulating to continuum. Keeping the spectrum fixed, one can work out
how changes with respect to rescaling of . One then finds that varies period-
ically as , which is a limit cycle solution of the RG equation. If the exponent
2 in 1/r2 is changed to a different power, the limit cycle will turn into a fixed
point.

Since many phenomena in condensed matter are described by RG equa-
tions with fixed point solutions, it is natural to speculate that there might
be many more systems whose physics are described by RG limit cycles. Al-
though we only have a few examples at present, phenomenon such as the
Efimov effect is sufficiently intriguing that it only raises the curiosity.
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