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The Berezinskii-Kosterlitz-Thouless phase transition is a novel (and quite
fundamental) phenomenon in which a classical statistical mechanical system
undergoes a continuous ordering phase transition without the appearance of
a local order parameter, that is, without spontaneous symmetry breaking. It
occurs in two spatial dimensions in a broad class of systems whose fluctua-
tions are described by a complex (i.e. two-component) field with an internal
XY rotational symmetry. Important realizations include the superfluid tran-
sition of helium films adsorbed on surfaces, superconductivity in amorphous
thin films, the melting of two-dimensional solids, and the ordering of two-
dimensional magnets with easy-plane anisotropy.

The work of Hadzibabic et al. now adds to this list an important new
system, ultra-cold atomic gases confined in traps and manipulated by opti-
cal lattice potentials. This new work demonstrates a remarkable means to
directly visualize the quantized vortices whose unbinding characterizes the
phase transition.

Mean field theory based on a phenomenological Ginsburg-Landau free
energy functional is often a good starting point for understanding ordering
phase transitions. However in lower spatial dimensions, fluctuation effects
beyond mean field theory become increasingly important. The Hohenberg
Mermin Wagner theorem says that in dimensions d ≤ 2, fluctuations are so
large that any ordering which breaks a continuous symmetry is destroyed
by thermal fluctuations. This can be seen within a simple spin wave theory
based on gaussian fluctuations of the order parameter field, which shows that
the field correlation function falls to zero algebraically with distance. Thus
the net magnetization of an XY magnet is zero at any finite temperature.
On the other hand, general arguments (backed up by high temperature series
expansions) require that the correlation function fall off exponentially at high
temperatures. Hence, there must be a phase transition at some temperature
TBKT below which the decay is algebraic and above which it is exponential.
The magnetization is zero in both phases and yet there is a phase transition!
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The key to understanding this is the realization that in addition to smooth
spin-wave fluctuations around the perfectly ordered state, there are also vor-
tex topological defects in which the order parameter phase winds by ±2π
along paths encircling the defect. Examination of the energy stored in such
a defect shows that it diverges logarithmically with system size. Hence at
low temperature, vortices of opposite winding number are confined together
by an attractive logarithmic potential. At high temperatures, the entropy
(which is also logarithmic in system size) wins and the free energy of un-
confined vortices becomes favorable. The proliferation of these topological
defects produces the exponential decay of the correlation functions.

Hadzibabic et al. directly observe these topological defects via the quan-
tum interference of matter waves emanating from a bilayer pair of two-
dimensional cold atomic gases. At zero temperature, releasing the two gases
from their confining potentials leads to a two-slit interference pattern in the
matter waves. Because the two gases have been separated by a large bar-
rier, they have not been in communication and their overall relative phase
is random. This does not destroy the two-slit pattern; it simply gives it a
random offset in position. At finite temperatures, the presence of a vortex
in one layer or the other produces a 2π phase slip that makes its appearance
as a ‘screw dislocation’ in the matter wave density pattern as schematically
illustrated in the figure below.

Amusingly, this result has deep connections with two seemingly unrelated
problems. First, optical vortices (phase windings of the electromagnetic field
around the line of propagation) are routinely generated holographically by
diffracting light from gratings containing various types of singularities such
as fork dislocations. Here we are dealing with a three-dimensional helical
grating containing a screw dislocation. If one were to Bragg scatter light
from this matter wave interference pattern, one would map the BKT vortices
onto vortices in the optical field.

Second, in the melting of two-dimensional crystals, it is the appearance
of fork dislocation defects in the crystal which produce exponential decay of
positional correlations of the atoms. Ironically, the usual theoretical modeling
of these dislocations consists of inventing a mapping onto an order parameter
field that represents them as logarithmically interacting vortices. Hence their
thermal proliferation is in the BKT universality class. Thus, in modern light,
we now understand that the complex order parameter field used to describe
these dislocations is essentially just the optical field that would result from
diffracting light from the solid.
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Figure 1: Edge view showing the 2D projected density of the matter wave
interference pattern resulting from the presence of a vortex in one of the
two original condensate layers. On the left the relative phase of the two
condensate layers is zero. On the right it is π, resulting in a shift of the
interference pattern by half a lattice constant. The full three dimensional
density profile of the interference pattern is a helix analogous to that of a
screw dislocation in a crystal. Dashed lines indicate an optical wave being
Bragg reflected from the matter wave. The phase variation of the optical
field across the sample would result in the creation of an optical vortex in
the scattered light.
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