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The last year has seen a flurry of activity on the supersolid state. This state was hypothe-

sized in 1969-70 by Andreev, Lifshitz, and Chester as a possible phase of 4He, by considering

the quantum mechanics of vacancies or interstitial defects in solid 4He. These defects are

expected to become mobile via quantum tunneling at low temperatures, and so behave like

a dilute gas of bosons. It was argued that these bosons can undergo Bose condensation

without disrupting the crystalline order of the host crystal, thus leading to the ‘supersolid’:

a state of matter with two distinct broken symmetries, the broken translational symmetry

associated with the crystalline order, and the broken U(1) symmetry of the superfluid state.

Such a state can support both superflow and the shear waves of the crystal.

The recent interest has partly been stimulated by experiments at Penn State (E. Kim

and M. Chan, Nature (London) 427, 225 (2004); Science 305, 1941 (2004)) on 4He. The

status of these experiments have been addressed by other comments in this journal club,

and I will not discuss it here. Numerical studies of realistic 4He models strongly indicate

that the pure 4He does not support a homogeneous supersolid phase.

A distinct motivation for the study of supersolids comes from the cuprates and other cor-

related electron compounds. Here we consider a slightly different ‘lattice supersolid’ phase.

The host crystalline lattice can be assumed to be rigid, so the symmetries of continuous
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translations and rotations of free space are broken in all phases. Nevertheless, there is an

unbroken discrete space group symmetry of the lattice, and we can ask if the electronic

state spontaneously breaks this space group symmetry. A superconducting state with a

spontaneously broken space group symmetry is then a ‘lattice supersolid’. There is evidence

for the breaking of square lattice symmetry in a number of doped cuprates, in the form

of phases variously identified as ‘stripe/checkerboard/charge-density-wave’. Some of these

phases also exhibit a non-zero Tc for superconductivity, although it is not completely clear if

the ‘stripe’ order and superconductivity are properties of the same phase, or manifestation

of different phase-separated regions of the sample. Nevertheless, the observations do raise

the possibility that a lattice supersolid exists in a generalized cuprate phase diagram.

A notable aspect of the broken lattice symmetry has emerged in recent studies of a closely-

related spin ladder compound (A. Rusydi, P. Abbamonte, M. Berciu, S. Smadici, H. Eisaki,

Y. Fujimaki, S. Uchida, M. Ruebhausen, and G. A. Sawatzky, cond-mat/0604101): each unit

cell of an insulating state with broken lattice symmetry contains exactly one pair of holes, or

an integer number of Cooper pairs. Theoretically, this suggests that a model of interacting

lattice bosons, each boson representing a Cooper pair, may be a reasonable starting point

for investigating the interplay between broken lattice symmetry and superfluidity.

There have been a number of theoretical studies of the ground state phase diagram of

hard-core lattice bosons. At half-filling on the square lattice, with strong nearest-neighbor

repulsive interactions between the bosons, the ground state is a two-fold degenerate checker-

board insulator. Moving away from half-filling, we then introduce vacancies or interstitials

in the cherckerboard state. The defect-condensation method discussed above applies here,

and could lead to a supersolid state. However, a variety of numerical studies have shown

that the situation is rather delicate, and quite prone to phase separation into a half-filled

insulator and a superfluid. Longer-range interactions or hopping terms are certainly needed

to stabilize a possible, homogeneous supersolid phase.

The papers highlighted in this note introduce a new mechanism for the stabilization of

a lattice supersolid. They consider hard-core bosons at half-filling on the triangular lattice.

This introduces the additional ingredient of frustration, and associated degeneracies in the

insulating state. Indeed, in the limit of zero boson hopping, the ground state has a macro-

scopic degeneracy for the model with only nearest neighbor repulsion: there are an infinite

number of arranging bosons on the triangular lattice so that half the sites are occupied and

2



only one-third of the bonds have bosons on both ends. Boson-boson correlations in this

ensemble can be computed exactly, and it is known that correlations at certain wavevectors

decay with a power-law.

Now examine the influence of introducing a small boson-tunneling amplitude into this

ensemble of degenerate insulating states. The first three papers listed above all demonstrate

convincingly that two important phenomena occur:

(i) For infinitesimal tunneling, the ground state is simply the equal superposition state of

all the degenerate insulators. Strong numerical evidence is presented that this state has

off-diagonal long-range order, with a finite superfluid stiffness.

(ii) For small, but finite, tunneling, the dynamics within the low energy manifold can be

mapped onto a quantum dimer model on the dual hexagonal lattice. This dimer model was

shown some time ago to exhibit ‘valence-bond-solid’ (VBS) order. For the bosons on the

triangular lattice, this VBS order translates into true long-range order at the wavevector

at which there was power-law order for zero tunneling. This emergence of a broken lattice

symmetry can be considered to be an ‘order-by-disorder’ effect induced by quantum fluctu-

ations.

Taken together, these effects convincingly demonstrate that the half-filled boson model on

the triangular lattice is a supersolid.

A sketch of the structure of the supersolid phase is shown in the figure. In a loose sense,
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we can view this supersolid as exhibiting phase separation into solid and superfluid, but on

a microscopic scale. As shown in the figure, one of the triangular sublattices has one boson

per site (this accounts for 1/3 filling), forming a static insulator which forms the ‘solid’, and

3



ensures the breaking of lattice symmetry. The remaining density of 1/6 filling bosons forms

a superfluid on which resides on the honeycomb lattice of bonds indicated by the thick lines.

In the last paper cited above, Melko et al. have extended the study of the hard-core

boson model on the triangular lattice to include strong 2nd neighbor repulsion. They find a

new supersolid phase, in which the solid order is striped. Again, the supersolid phase has a

‘microscopic phase separation’ interpretation, with an insulator of filled rows (separated by

3 lattice spacings) interspersed by mobile atoms forming the superfluid. However, there are

strong indications from the numerics that this interpretation is too simplistic: the anisotropy

in the superfluid stiffness is much smaller than that in the solid order.
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