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Microwaves, despite their name, are particles. However the photon quanta
of microwave fields are rather pusillanimous. They carry four to five or-
ders of magnitude less energy than optical photons and are correspondingly
vastly more difficult to detect and count. Nevertheless, recent progress in
atomic cavity QED [1] and superconducting circuit QED [2] has achieved
this. Single-photons-on-demand as well as coherent superpositions of 0 and
1 photons have been generated in a microwave resonator electrical circuit.
[3]

A classical signal generator produces a sine wave of constant amplitude,
frequency and phase. The quantum equivalent (produced by a laser or a
microwave signal generator) is a so-called coherent state. Because the phase
is sharply defined, the photon number (which is the conjugate variable), is
necessarily ill-defined. The number of photons to be found in a coherent pulse
is in fact Poisson distributed. As a result, a coherent pulse which contain
N̄ photons on average will have a variance in photon number of

√
N̄ . These

closest cousins to classical waves are of course useful but not terribly exciting.
There is great current interest in generating highly non-classical states of the
electromagnetic field for purposes of quantum communication and quantum
information processing. One interesting and highly non-classical class of
states are the Fock states. These are electromagnetic pulses which contain
exactly n photons where n is some specified integer. Because they have
definite photon number, the phase suffers complete quantum uncertainty.
Hence the electric field of such pulses is completely uncertain, a fact which
has recently been verified. [3]

Hofheinz et al. have made a tour-de-force advance by deterministically
generating photon number Fock states containing up to N = 6 photons
(N = 15 in recent unpublished work) using a superconducting qubit coupled
to a resonator.

The resonator supports discrete modes at integer multiples of the fun-
damental. Because the modes are widely spaced in frequency for short res-
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onators, only one mode is in the experimentally relevant frequency range and
the others can be ignored. The relevant mode is a harmonic oscillator with
energies En = nh̄ω0 and we interpret n as the number of photons. A co-
herent drive applied to this harmonic oscillator can only produce a coherent
state, which is a superposition of different photon number eigenstates. In
order to achieve ‘number squeezing’ to produce a Fock state (photon number
eigenstate), one must have anharmonicity in the circuit. This anharmonic-
ity is supplied by the Josephson junction which makes the energy levels of
the qubit non-uniformly spaced in energy. For sufficiently large anharmonic-
ity the transition frequency that excites the qubit from the ground to first
excited state is off resonant for all other transitions, and the qubit can be
approximated as a two-level system. Applying a ‘π pulse’ to put the qubit
into its excited state corresponds to the absorption of precisely one photon
from the drive field.

Photon number eigenstates in the cavity are generated following a pro-
tocol proposed by Liu et al. [4] of repeatedly applying a π-pulse to excite
the two-level qubit and then bringing the qubit into degeneracy with the res-
onator for precisely the right length of time to transfer the energy quantum
into the resonator. This time interval is shorter (by a factor of 1/

√
n) for

each successive transfer and so very precise timing of a complex sequence of
control signals is required to carry out the experiment.

Hofheinz et al. count the number of photons by bringing the qubit into
degeneracy with the cavity and measuring the rate of Rabi flopping of the
energy between the cavity and the qubit. Because of the way harmonic
oscillator matrix elements work, this rate scales as

√
n which allows n to be

measured.
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