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Until recently first principles condensed matter research has been mainly focused on un-

derstanding equilibrium phenomena in many-particle systems. Non-equilibrium phenomena

were mostly approached either phenomenologically or using kinetic equation which is usually

applicable to weakly interacting systems not far from equilibrium. Equilibrium phenomena

are described by the partition function, which is typically postulated to have a Gibbs ex-

ponential form. Lately new experimental systems like cold atoms have emerged which have

stimulated wide interest in understanding properties of systems, especially quantum, which

were driven away from the equilibrium and not coupled to the external heat bath. There are

very few statements one can make with certainty about such systems. For example, there

is a general belief that if sufficiently complex such systems will relax to thermal equilib-

rium. However, many issues remain illusive. In particular, what are exactly the conditions

for such relaxation, how does relaxation happen, what are the other possible asymptotic

(steady) states, what is the role of (non)integrability, dimensionality, range of interactions

etc.?

In the paper highlighted above, A. Silva established a very interesting general connection

between the distribution of the work done to perform a quench (a sudden change in the

Hamiltonian) in an arbitrary system and the Loschmidt echo. If the system is initially in



the ground state then the work distribution characterizes energy fluctuations in the system

after the quench (note that the final state of the system does not have to be equilibrium).

At the same time the Loschmidt echo (or fidelity) of the system is the measure describing

dephasing in the equilibrium state due to the quench. It is formally defined as L(t) = |G(t)|2,
where

G(t) = 〈exp[iH(g0)t] exp[−iH(g1)t]〉 . (1)

Here g0 and g1 are the couplings before and after the quench and the expectation value is

taken with respect to the equilibrium state corresponding to the coupling g0. The Loschmidt

echo is often used to characterize quantum chaos (see e.g. Ref. [1]). More specifically Silva

establishes the equality between G(t) and the fourier transform of the work distribution

P (W ):

G(t) =

∫
dW exp[−iWt]P (W ). (2)

This equality between the two seemingly different quantities suggests that there are possi-

ble fundamental relations between chaos (which governs the Loschmidt echo) and thermal-

ization (which requires very specific energy distribution after the quench consistent with

the equilibrium ensemble). This equality is also very closely connected to the Jarzynski’s

nonequilibrium work relation [2].

In the other paper highlighted above paper G. Roux develops a new numerical method,

which allows one to directly compute diagonal (stationary) elements of the density matrix

in a arbitrary system after a quench without need to compute the whole density matrix.

These diagonal elements of the density matrix determine energy, all its moments and other

conserved quantities in the system after the quench. They also determine all long-time

properties of the system after it relaxes to the steady state (see e.g. Ref. [3]). Using ideas

similar to Silva’s, G. Roux develops an algorithm for computing the fourier transform of

the quantity A(t) = 〈ψ(t)|ψ(0)〉 - the overlap of the wave function after the quench and the

initial wave function. Up to an inessential phase, A(t) coincides with G(t) for the case of

the pure initial state. In particular, |A(t)|2 precisely gives the Loscshimdt echo L(t) in the

system. In turn the fourier transform of A(t) contains all the information about the diagonal

(stationary) elements of the density matrix. This method allows one to do calculations in

much bigger systems then using the exact diagonalization and it also gives direct access to the

long-time properties of the system (overcoming the main limitation of DMRG methods [4]).



The downside of the suggested method of course is that one does not obtain in this way

the full information about dynamics in the system. The author illustrates his ideas with

calculations to the quench in the Bose–Hubbard model and obtains very interesting results.

In particular, he gets a strong indication that for small quenches the steady state density

matrix in this model acquires canonical Gibbs form.

[1] R. A. Jalabert and H. M. Pastawski, “Environment-Independent Decoherence Rate in Classi-

cally Chaotic Systems”, Phys. Rev. Lett. 86, 2490 (2001)

[2] C. Jarzynski, “Nonequilibrium Equality for Free Energy Differences”, Phys. Rev. Lett. 78, 2690

(1997).

[3] M. Rigol, V. Dunjko, M. Olshanii, “Thermalization and its mechanism for generic isolated

quantum systems”, Nature 452, 854 (2008).

[4] U. Schollwoeck, “The density-matrix renormalization group”, Rev. Mod. Phys. 77, 259 (2005).


