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New physics of a strongly correlated material is often first revealed in transport experi-
ments. Still, we have virtually no reliable tool to calculate transport coefficients in the limit
where the mean free path is short and/or the charge carriers are not well defined quasipar-
ticles. An elegant development in string theory led to the precise calculation of transport
coefficients in strongly coupled field theories and has inspired new results for transport near
the superfluid-insulator transition, in cold atom systems and for graphene.

Evidence for low-viscosity flow in high density quark matter, as seen in relativistic heavy
ion collisions, motivated the investigation of the shear viscosity, 7, in quantum many particle
systems [see E. Shuryak Progr. in Particle and Nucl. Phys. 53, 273 (2004)]. 1 measures the
resistance of a fluid to establishing transverse velocity gradients. The traditional approach
to calculate 7 is by solving the Boltzmann equation. A transport scattering rate 7! is
determined perturbatively, yielding n ~ e4,7 with characteristic energy density ey,,. The
approach is applicable at weak coupling or for diluted systems, where 7 is long and the
shear viscosity large. A very beautiful alternative approach was pioneered by Policastro
et al., and is based upon the duality between strongly coupled conformal field theory and
weakly coupled gravity in extra dimensions. Policastro et al. find
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for the shear viscosity at infinite coupling of a 3 + 1 dimensional field theory (the large N
limit of a super-symmetric SU (V) Yang-Mills theory that is argued to resemble QCD). ¢ is
the speed of light. In the language of quasiparticle scattering, the result implies a purely
Planckian relaxation time

hTil >~ k’BT, (2)

independent on the coupling constant.

To have a sharper measure of what precisely small or large viscosities mean, Kovtun et
al. "normalized" n by the entropy density s. 1 has units of Axdensity, while s is of course
measured in units of kpxdensity, making their ratio a dimensionless quantity times i/kp.
The entropy density obtained in the same strong coupling limit is s = %QN 2kp (k;j—cT)3, as

expected for massless fermions and bosons. Together, these two results imply that /s =

(47) ' h/kp is a universal number. It was then postulated by Kovtun et al. that
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for a large class of equilibrium systems. The equal sign refers to the above strong coupling
limit. A fluid where 7 takes its lowest value is refereed to as a perfect fluid. These impressive
results and the postulate, Eq.3, lead to a number of interesting questions for condensed
matter physics systems:

What can one learn about quantum critical transport? The scale invariance of conformal
theories makes them relevant for the description of critical points. The new aspect of the
above listed theories is that they enable us to evaluate the corresponding scaling functions or
universal coefficients close to a strong coupling fixed point, where transport is not due to the
infrequent collision of well defined quasiparticles. In case of two dimensional systems this was
done by Hartnoll et al., who obtained exact results for the conductivity of a strongly-coupled
conformal field theory and applied them to systems near a superfluid-insulator transition.

Does the above bound apply to all fluids? A counter example to the above bound was
already mentioned in the original paper by Kovtun, Son, and Starinets: a classical fluid with
large number of nonidentical species has an arbitrarily large mixing entropy without neces-
sarily affecting the viscosity. It was however proposed that Eq.3 applies to non-relativistic
single-component systems. All known condensed matter systems obey Eq.3. In classical
fluids, the minimum value of 77/s is taken at the critical point, with /s > 10 7/s|,. In *He,

a minimum value close to 9 n/s|, is reached at the A-point. Theories for cold atom systems



with diverging scattering length and for clean graphene predict 1/s to be smaller than for
“He (but still larger than 7/s|,). While it seems that Eq.3 is not a rigorous bound for all
equilibrium fluids, it clearly sets an order of magnitude limit. Only critical systems have
n/s values that come close to (47) " h/kp.

Are there similar bounds for other transport coefficients? Boltzmann theory of massless
fermions or bosons gives /s =~ h/kp X l,rp/ A1, where l,,,, is the mean free path and Ay the
mean distance of thermally excited particles. A saturation of n/s at h/kp times a number
of order unity corresponds the saturation of ,, 7, at the mean carrier distance. In case of the
electric conductivity this corresponds to the Mott-Ioffe-Regel (MIR) limit. Despite signs for
a saturation of the resistivity in some systems, evidence for the violation of the MIR limit
in high temperature superconductors at elevated temperatures is an important clue that no
rigorous bound for the conductivity exist. Of course, this does not imply that Eq.3 for 7 is
violated in the cuprates.

Can one come up with a tighter bound in Fermi liquids? For a Fermi liquid, n/s is
not of order unity even if one sets kpl,,r, = 1. Within Boltzmann theory follows 7/s =~
g_2% (Er/ (kzT))? with dimensionless coupling constant g. n/s is large, even if g ~ O (1).
However, comparing the diffusive shear mode of a relativistic fluid (graphene, the quark
gluon plasma etc.) with that of a Galilei invariant fluid (of velocity v and mass m), suggests
the "normalization" nT'/ (mv?p) ~ g 2Er/ (kgT), instead of n/s, as candidate bound for
g~ O(1).



