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These papers report the development of a new type of superconducting
quantum device, named “fluxonium” with some highly desirable new fea-
tures, and experiments which demonstrate the power of the device by using
it to observe, “for the first time”, coherent quantum tunneling between two
“classically distinct” states of a superconducting circuit. This application
also required clever design of a measuring scheme, which can both sense the
state of the quantum device, and reset the state when desired. These are
impressive achievements, which suggest that the new device may have great
potential for applications in quantum measurements and computation.

A schematic circuit representation of the fluxonium device is shown in the
left hand portion of Fig 1, labeled “atom”. If we neglect the coupling to the
external world through the capacitance Cc, the device may be represented
by a Hamiltonian of the form

H = 4EC(N −N0)
2 +

EL

2
(φ + 2πΦext)

2 − EJ cos φ , (1)

where φ is the phase change across the small Josephson junction indicated
by the X in the figure; Φext is the external magnetic flux through the circuit,
in units of the superconducting flux quantum Φ0 ≡ h/2e; the operator N
measures the charge-difference stored on the junction capacitance CJ ; and
N0 is an “offset charge”, reflecting the potential due to any external charges in
the vicinity. The charging energy is defined as EC = e2/2CJ , and the charge
operator N is defined in units of 2e, so that it satisfies the commutation
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rule [φ, N ] = i. The coefficient EJ is the Josephson coupling energy, while
EL = (h̄/2e)2/L, where L is an effective inductance of the circuit.

The reason the Hamiltonian can be reduced to the simple form (1) is that
the entire circuit is superconducting, and the temperature is sufficiently far
below the energy gap that quasiparticle excitations can be neglected, and the
circuit has been designed so that parasitic elements, which would complicate
the Hamiltonian, have been largely eliminated.

A major innovation of the fluxonium design is that it achieves a large
value of L by using the kinetic inductance produced by a series array of
of NL = 43 large Josephson junctions. The Josephson coupling energy EA

J

and the capacitance for each of these junctions are sufficiently large that one
can neglect the possibility of phase slips through them, Then, if the wire
between the junctions is sufficiently thick, the total energy of the array is
minimized when the phase difference across each of the large junctions is
equal to (φ + 2πΦext)/NL. The energy of the array then has the form of the
second term in (1), with EL = EA

J /NL. This in the end, is small compared
to the coupling energy EJ of the “small junction” shown in Fig. 1. (The
magnetic flux produced by supercurrent in the circuit may be neglected, as
it is always # Φ0.)

The parameters quoted in article B are EL/h = 0.52 GHz, EJ/h = 8.9
GHz, and EC/h = 2.4 GHz. The authors note that no previous device
achieved a combination of parameters in this range. They also note that
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if L had been obtained simply from the electromagnetic interaction of a
current-carrying superconducting loop with its generated magnetic field, the
associated distributed capacitance would have led to a value of the ratio
EC/EL comparable to the square of fine structure constant, rather than to a
value ≥ 1, as achieved in this device.

Note that the phase φ in Eq. (1) is defined on the entire real line, and H
is not periodic in φ. The conjugate variable N is also defined on the real line,
and is not required to be an integer. Thus φ plays the role of a coordinate, and
N plays the role of momentum, in a standard one-dimensional Schrödinger
equation. An important property of H is that its eigenvalues are completely
independent of the offset charge N0, which makes the fluxonium device highly
insensitive to low-frequency charge fluctuations in the environment.

The upper panel of Fig. 2 shows the effective potential for the variable φ
and the energies of the three lowest quantum states, when the external flux
is tuned to the symmetric point Φext = Φ0/2, and the parameters EJ , EC , EL

have the values stated above. The lower panel shows the wave functions
of states |L〉 and |R〉, which are the approximate ground states localized
in the the left or right wells, respectively. As illustrated, the states have
a separation that is large compared to their widths, so the states may be
considered classically separable.

The actual energy eigenstates, labeled 0 and 1, are even and odd linear
combinations of the two localized states, with a frequency splitting ω01/2π ≈
350 MHz that is small compared to the classical oscillation frequency in a
single well (≈ 13.5 GHz). The third energy level, labeled 2, which is spread
across both wells, has a much higher energy, with the frequency separation
ω02/2π ≈ 10 GHz.

If the system is prepared initially in one of the localized states, say |L〉, we
would expect it to oscillate back and forth between the two wells at the fre-
quency ω01, due to resonant tunneling between the wells. Ideally, one would
like to observe this by a direct measurement of the expectation value of the
phase φ as as a function of time. However, the electrical currents associated
with different values of φ are much too small to measure, so an alternative
scheme was necessary. The observations in article B were achieved by using
a weak capacitive coupling to a quater-wave trasmission-line resonator, (the
“cavity” in Fig. 1), whose frequency is close to the large excitation frequency
ω02. By detecting a small phase shift in a signal applied to the transmission
line at the resonant frequency, the experimenters could distinguish between
situations where the fluxonium circuit is in one or the other of the eigenstates
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0 or 1. By applying a second signal at the coherent tunneling frequency ω01,
they could then observe oscillations between the states 0 and 1 at a Rabi fre-
quency governed by the strength of this second signal. (The authors present
a figure with ten such oscillations). Moreover, by applying a signal which is
slightly detuned to the red or the blue from ω02, the authors are able to reset
the fluxonium, at will, to the state 0 or 1. Finally, the authors were able to
study the coherence of the macroscopic coherent tunneling oscillations, using
a Ramsey fringe protocol. They obtain a quality factor Q ≡ TR ω01 = 580,
where TR is the Ramsey decay time. Large values of Q are important for
applications such as quantum computation.

Article B notes, in its introduction, that the experimental realization
of macroscopic quantum coherence between classically distinct states of a
superconducting circuit, proposed by Leggett in 1980 [1,2], has long been
understood to be difficult and perhaps believed impossible. According to the
authors, their experiment is the first to achieve this goal, because theirs is
the first in which the wave functions of the states have a difference in the
mean value of φ that is large compared to the fluctuations in each state.
An important motivation for Leggett’s original interest in such experiments
was as a test of the validity of quantum mechanics itself, in a new regime
where he felt there was a possibility that discrepancies might be found. I
am not able to say how far the current experiments have carried us in the
direction that Leggett envisaged in his paper. It is clear, however, that the
experiments have demonstrated the capabilities of an exciting new device
with great promise in the area of quantum coherence and manipulation.
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