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The Mode-Coupling Theory (MCT) is considered by many to be the only
available “first principles” approach to account for the complex dynamics of
super-cooled liquids [1]. It is based on a somewhat uncontrolled closure scheme
of the exact equations of motion that describe the time evolution of the dynami-
cal structure function S(k, t) (i.e. the k-dependent density correlation function).
The resulting self-consistent equations have several remarkable properties. They
predict that as the temperature is reduced (or the density is increased) a plateau
appears in S(k, t) at intermediate times, before the final relaxation to zero on
time scales that diverge as one approaches the so-called MCT transition point,
beyond which the system should be in a dynamically arrested (glass) state. Al-
though this transition is now recognized to be an artefact of neglecting “activated
processes”, the promoters of MCT insist that the theory is quantitatively valid
in the weakly supercooled regime, i.e. the early stages of the slowdown of the
dynamics, where these activated processes should not play a major role.

There is indeed a vast body of experimental data that can be reasonably
well fitted by MCT, in a restricted regime of temperatures or densities where
the relaxation time increases by a factor 100 to 1000 from its value in the low-
viscosity liquid. One of the important features of the theory is that all dynamical
properties can be computed from the knowledge of the static structure factor,
S(k, t = 0). This leads to falsifiable predictions, concerning for example the
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detailed k dependence of the height of the plateau in S(k, t), or the non trivial
(“reentrant”) phase diagram of some colloids. These predictions are indeed often
found to be in quantitative agreement with experimental or numerical results.

From a theoretical point of view, however, several nagging worries have been
lingering around for a long time. One of them is the absence of a well defined
limit in which the MCT equations for liquids are exact. It is reassuring that
mean-field equations for magnets can be derived in the limit of large spatial
dimensions. Other self-consistent equations in condensed matter physics can be
justified by considering a large spin limit, or a large number of component limit,
etc. In the case of MCT, a field-theoretical formulation – that would naturally
lend itself to consistent approximation schemes – is fraught with difficulties, and
is still unresolved [2,3]. On the other hand, a mean-field treatment of a family
of spin-glasses does lead to dynamical equations with a mathematical structure
akin to the MCT equations for liquids, suggesting that there should indeed be a
way to formulate MCT as a mean-field approximation of some sort.

Unfortunately, some recent papers suggest that the above problems might
be serious. The quantitative agreement between MCT for supercooled liquids
and numerical/experimental results should not be restricted to three-dimensional
systems only. There is a priori no reason to believe that the approximations used
to derive MCT should not work in other dimensions as well. This is what two
groups have independently investigated [4,5], by studying hard sphere systems in
dimension d = 4 up to d =∞. (Hard spheres in d = 3 have been one of the test-
bed of MCT). Unfortunately, the results are not good; inconsistencies appear
as soon as d > 4, and the situation becomes worse and worse as d increases.
This suggests that the quantitative success of MCT in d = 3 might be partly
coincidental. But a more disturbing predicament stems from the very recent
work of Berthier & Tarjus [6], who took on the basic tenet of MCT: that the
dynamics is entirely encoded in the static structure factor S(k). They came up
with a model of glass former where the attractive part of the interaction between
particles can be switched on and off in such a way that S(k) is left unchanged.
But the dynamics is seen to change radically between the two systems (the one
with attraction being much slower than the one without), even in the weakly
supercooled regime where MCT should hold!

Can MCT still save its head? It may after all be quixotic to look for quantita-
tive agreement between a mean-field, approximate theory and empirical/numerical
data. While MCT is probably not the one-size fit-all theory that was first hoped,
the physical scenario underlying the MCT equations does capture an important
aspect of the glass transition: the crossover between an essentially free motion
of the particles to a activated motion between well separated local minima of
the energy landscape. With A. Andreanov and G. Biroli [7], we have argued that
MCT should be interpreted as a Landau theory describing this topological change
of the energy landscape. In other words, while the mathematical structure of the
equations should be generic and have a broad range of validity, the value of the
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parameters involved in the equation should not be taken too seriously.
But even within this restricted interpretation, activated effects are still left

out of the theory, and are clearly important to understand the dynamics at long
times, even for relatively high temperatures. Furthermore, as with all Landau
theories, critical fluctuations become dominant close enough to the transition
below some dimension, which turns out to be dc = 8 for MCT. Whether or not
all these complications leave a sliver of the parameter space where MCT provides
genuinely testable predictions, is at this stage an open problem.
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