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The study of correlations in itinerant fermions may be said to have begun with Wigner

in connection with the problem of ferromagnetism in metals. Wigner argued that there

may be no ferromagnetism in a free-electron gas with Coulomb interactions at any density,

unlike in the Hartree-Fock calculation of Bloch, which shows ferromagnetic polarization

in free-electrons for densities lower than rs > 5.45. The Hartree-Fock calculation favors

ferromagnetism because of the ”spin-hole” in the pair correlation function gσ,σ′(r): the

parallel spins avoid each other at small distances due to the Pauli principle, thus avoiding

the exchange energy 1/rs, at the cost of increased kinetic energy, which is only 1/r2
s .

Wigner pointed out that due to Coulomb interactions, the anti-parallel spins also avoid each

other almost equally well and presented an approximate calculation for his conclusion. The

calculation of what came to be called the correlation energy: the exact energy minus the

energy in the Hartree-Fock approximation, is analytically impossible except in the small

rs limit. Various approximate numerical schemes have been devised. One of the best are

variational Monte-Carlo calculations, for example by Ceperely and Alder 1, who found the

paramagnetic state to state to be stable at least for rs & 75. Extreme precision is required in

such calculations; the difference in energy between the paramagnetic and the ferromagnetic

state at rs = 50 is 6−5 Rydberg.

So, what then is the physical basis for ferromagnetism at large temperatures in a wide
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variety of metals? Well reasoned arguments supported by a variety of empirical data by

Mott, van Vleck and Herring2 suggest that a lattice of atoms with orbital degeneracy and

associated Hund’s rule is essential. But there is room for much theoretical work here which

has been ignored for very long. Especially interesting is the fact that the spin-splitting of

the bands in ferromagnetic metals is often more than an order of magnitude larger than the

transition temperature. This appears to be occurring also for itinerant anti-ferromagnetism

in the pnictides which have received more attention due to their superconductivity. The

physics of superconductivity cannot however be usefully thought about without addressing

the questions about their magnetism and the magnetic fluctuations above the transition

temperature which lead to the above large ratio.

The question of the model for ferromagnetism has also arisen in quite a different context.

In recent experiments in cold fermionic atoms without confining periodic potentials, Jo

et al.3 found evidence for significant ferromagnetic correlations for kFa & 1, where a is

the (repulsive) scattering length of the neutral atoms (the experiments give evidence of

ferromagetic correlations that extend over distances of 3 to 4 inter-atomic distances), exciting

a flurry of theoretical activity. The physics of ferromagnetism in such a problem is quite

different from that of a problem with Coulomb interactions. Herring2 summarized earlier

variational and perturbative calculations for hard spheres and concluded that there may in

fact be ferromagnetism in such a model for kFa & 1.7.

Very recently variational quantum Monte-carlo calculations have been done both for the

single band Hubbard model (first paper above) on a cubic lattice with varying ratio of U/t

and for hard sphere fermions characterized by a scattering length a and varying density, with

results which appear to be quite different. In order to avoid the dreaded sign problems, some

approximations have been made in both cases. But to the best of my limited knowledge on

this matter, the results do not depend in any serious way on these approximations.

For the Hubbard model, an academic result due to Nagaoka is well known: a single

hole polarizes the system ferromagnetically for U = ∞. The work of Reference (4) below

implies that the range of Nagaoka’s result extends at least to a density of holes proportional

to LogN/N in two dimensions and N1/3/N in two dimensions, where N is the number of

sites. The first paper cited above does the calculations far away from this limit. Results

are presented for densities between 0.0625 and 0.25 per site and U/t varying from 0 to

32. No ferromagnetism is found. The pair-correlations functions gσ,σ′(r) are calculated
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and they show that Wigner’s idea mentioned above for particles interacting with Coulomb

interactions works for the Hubbard model as well. The paramagnetic state energy is lower

than the ferromagnetic energy at all U/t examined with no sign that the results will change

at higher U/t. I do not know why these calculations were not done also for hole densities

near half-filling.

In the second paper above, hard sphere fermions are treated and it is found that a partially

polarized ferromagnetism is stable for kFa & 0.8 and full polarization for kFa & 0.95. While

these results are in rough accord with Herring’s surmise, the complete lack of correspondence

with the Hubbard model is surprising. In the Hubbard model with large U , the maximum

scattering length is bounded by a given by the lattice spacing or kFa = 1.03n1/3. That may

explain why for the densities investigated for the Hubbard model, no ferromagnetism was

found.

I do not know why the Hubbard model calculations were not done also for hole densities

near half-filling, i.e n ≈ 1. It would also be very useful to understand aspects of ferromag-

netism in real metals to have calculations with orbital degeneracy and local exchange or

Hund’s rule couplings beside the local repulsion parameter U .

I wish to thank Steve Kivelson for introducing me to the paper by Barbieri, Riera and

Young.
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