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All chemistry is local, as erstwhile Speaker of the US House of Representatives Thomas

P. (“Tip”) O’Neill did not quite say (he was referring to politics), while condensed matter

physics is largely concerned with long wavelength properties. Nevertheless chemistry and

condensed matter physics share a need to calculate the ground state energies and electronic

excitation spectra of systems with strong electronic correlations. Direct approaches, includ-

ing the configuration-interaction and coupled-cluster methods of quantum chemistry as well

as straightforward quantum Monte Carlo, have not solved the strong correlation problems

of physics and chemistry. In this situation, one may turn to indirect approaches, in which

the solution of a simpler auxiliary problem is used to obtain information about a restricted

set of properties of the full system.

The best known of the indirect approaches is density functional theory, for which Wal-
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ter Kohn was awarded part of the 1998 Nobel Prize for Chemistry. The restricted set of

properties are the electron density and ground state energy and the auxiliary problem is a

one-electron Schroedinger equation with a potential self-consistently determined from the

electron density. Density functional theory (while exact in principle) alsoencounters difficul-

ties in the strong correlation situation and indeed a good working definition of the strong

correlations problem is ’the behavior of materials for which current implementations of den-

sity functional theory fail to provide a good description of the ground state and low-lying

excitations’.

“Dynamical mean field theory” is a different indirect approach developed over the last

two decades in the condensed matter community.[1–3] Here, the restricted properties are

suitable averages over the spatial dependence of the electron Greens function (or self energy)

and the auxiliary problem is a “quantum impurity model”: a finite system coupled to

a noninteracting reservoir of states with the system-reservoir coupling is self-consistently

determined from the (approximation to the) electron Greens function. Different flavors of

dynamical mean field theory exist, including the original single-site version [1], ’cluster’

extensions [2] which provide more accurate accounts of energetics and physical properties

at the expense of solving a more complicated impurity model, and “dual fermion” [4] and

“D − Γ” [5] methods which incorporate spatial dependence by use of vertices constructed

from solution of single-site dynamical mean field equations. “LDA+DMFT” approaches use

band theoretic methods to obtain more realistic approximations to the many-body models

which are actually solved[3, 6]. The methods can capture prototypical strong correlation

phenomena such as local moment creation and its interplay with band formation and are

proving useful in understanding the electronic structure and physics of materials with “strong

correlations”.

Dynamical mean field theory should be as applicable to nanosystems as to bulk materials.

In Phys. Rev. Lett. 99 046402 (2007), S. Florens took a first step in this direction,

introducing the idea of using dynamical mean field theory to study both isolated finite

systems and nanocontacts (small systems more or less weakly coupled to noninteracting

leads). He defined a general procedure and outlined a range of systems to which it might

be applied and presented results obtained using a single-site approximation to the Hubbard

model defined on a finite sized Bethe lattice. Florens’ main scientific focus was on the

metal-insulator transition. He found oscillations in the quasiparticle weight related to the



Friedel oscillations coming from the cluster boundary, and (in contrast to what is found

in the single-site dynamical mean field approximation to the the bulk system) a first order

jump as the insulating phase is approached by increasing interaction strength.

FIG. 1: Upper panel: sketch of model sys-

tem studied by Valli et. al. Lower panel;

linear response conductance across ring

computed from dynamical mean field ap-

proximation and from an exact quantum

Monte Carlo calculation, for two cases:

all sites coupled and only nearest neighbor

sites coupled.

Three recent publications have implemented, ex-

tended and applied Florens’ ideas. In Phys. Rev.

Lett. 104 246402 (2010), Valli et al. applied the

dynamical mean field approximation to investigate

the conductance of nanocontacts, modeled as finite

Hubbard clusters coupled to leads. (Note: the au-

thors refer to the “nano-D − Γ” method, but it

appears what is actually used is the single-site dy-

namical mean field approximation: the extra steps

involved in constructing the vertex needed for the

full D−Γ method seem not yet to have been under-

taken). Their work took a step beyond Florens’ by

using geometries more realistic than the Bethe lat-

tice and by comparing the dynamical mean field re-

sults to those obtained by simply solving the entire

problem using a quantum Monte Carlo method. An

example of the rather encouraging comparisons be-

tween the dynamical mean field and full quantum

Monte Carlo results is shown in Fig. 1.

In Phys. Rev. B82, 195115 (2010), Jacobs,

Kotliar and Haule take the same set of ideas in a “real materials” direction, using the

“LDA+DMFT” methodology to calculate various properties of 2 and 10 atom Ni clusters

arranged as nanocontacts between (001)-orientd Cu nanowires. The single-site DMFT ap-

proximation was again used, but all of the Ni d-orbitals were treated and realistic on-site

interactions were incorporated. Among other things a temperature-dependent Fano reso-

nance (not present in the standard LSDA band theory method) was found in the transmission

amplitude (see Fig. 2).

Finally, in J. Phys.: Condens. Matter 22 462202 (2010), Turkowski et al. use dy-

namical mean field ideas to compute the properties of Fen molecules with 2 ≤ n ≤ 5.



FIG. 2: Sketch of model systems and

energy-dependent electron transmission

amplitude of Ni-dimer nanojunction

(left sketch) computed from dynamical

mean field approximation and compared

to results of local spin density approxi-

mation (LSDA). Structure around ω =

0 is interpreted as a Fano resonance

arising from quasiparticles which be-

come coherent only at low T .

The authors apparently (the presentation is some-

what terse) use “GGA+U” band theory methods to

obtain structures (dimer, equiliateral triangle, single-

sided and bi-pyramid for n = 2, 3, 4, 5 respectively).

A tight-binding model is then constructed for the Fe

s and d electrons using the standard Harrison rules

(with due attention to the relative orientation of the

Fe atoms) but with hopping amplitudes renormalized

by an apparently arbitrarily chosen factor of 0.367.

The difference in on-site energies between the s and

d orbitals is not stated. A phenomenologically ad-

justable interaction U (but no J) is then applied (pre-

sumably to the d orbitals), and the resulting model

is solved using the single-site dynamical mean field

approximation.

Results (see Fig. 3) for the magnetization (red

squares) do not seem to be a qualitative improvement

on those obtained by other methods such as the local

spin density approximation. While the “GGA+U”

method yields a magnetization which is too high, the

single-site dynamical mean field approximation seems rather to over-correct these, possibly

because of the neglect of the ‘J’ interaction or because the single-site dynamical mean field

method is a quantitatively poor approximation in many cases.

The phenomenological manner in which the interaction and hopping parameters seem

to have been chosen is somewhat at variance with the ethos of quantum chemistry, which

emphasizes first principles computation and quantitative accuracy. Also, what was studied

was not quite an isolated molecule: the molecules were placed on a lattice and a (presumably

weak, but unspecified) inter-molecular coupling was included so an existing infinite-system

DMFT code could be used. But these are quibbles, easily remedied. They should not distract

one from the real achievement of this paper, which is the demonstration that dynamical mean

field ideas can be used in a quantum chemical context and can produce nontrivial results.

The works of Florens, of Valli et. al., of Jacob et. al. and of Turkowski et. al.



FIG. 3: Magnetization per atom for

Fen clusters computed by Turkowski

et. al. using dynamical mean field

method (red boxes) and compared to

results obtained from band theory

methods and experimental data.

establish that something potentially interesting can be

done in both the nanoscience and the quantum chem-

istry context. (My opinions are not entirely unbiassed:

my collaborators and I have applied dynamical mean

field techniques to molecules (arXiv:1010.3180)). The

important questions now are: how do you best do it,

and how good are the answers. While I have presented

the story in terms of the application of dynamical mean

field theory to new areas, the most interesting conse-

quence may be the effect of the other areas on the dy-

namical mean field method. The focus on quantitative

accuracy and computational efficiency characteristic of

quantum chemistry poses a severe challenge to the dy-

namical mean field community. Meeting this challenge

will, among other things, improve our ability to calcu-

late properties of the bulk correlated electron materials

whose behavior was the original motivation for the development of dynamical mean field

theory.
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