
“Maximum and Minimum Stable Random Packings of Platonic Solids”

Authors: Jessica Baker and Arshad Kudrolli

arXiv:1008.1728 (2010)

Comment by Salvatore Torquato, Princeton University, USA

Packing problems are extremely easy to pose but notoriously difficult to solve rigorously.
For example, how densely can nonoverlapping particles fill d-dimensional Euclidean space
and what is the corresponding arrangement [1]? Although Kepler conjectured the densest
packing of identical three-dimensional spheres almost over four centuries ago, it took nearly
that amount of time to prove that the face-centered-cubic lattice (the way your green grocer
stacks oranges) is indeed the densest arrangement [2]. Packing problems are ancient but
they continue to provide fascinating challenges for scientists and mathematicians [1,2,3,4].

Dense packings of hard particles have served as useful models to understand the struc-
ture of low-temperature phases of matter, granular media, heterogeneous materials, and
biological media [3]. Disordered jammed sphere packings have been employed to understand
glassy states of matter [3,4]. There has been a resurgence of interest in maximally dense
sphere packings in high-dimensional Euclidean spaces [1,3,5]. Interestingly, the optimal ways
of sending digital signals over noisy channels correspond to the densest sphere packings in
high-dimensional spaces [1,3].

It is only very recently that attention has turned to understanding dense packings of
congruent nonspherical particles in three-dimensional Euclidean space, including ellipsoids
[6], superballs [7], tetrahedra [8-12], and all of the Platonic and Archimedean polyhedron
solids [9]. It was conjectured that the densest packings of the centrally symmetric Platonic
and Archimedean solids are given by their corresponding optimal lattice packings [9], which
is the analog of Kepler’s sphere conjecture for these polyhedra.

An interesting fundamental and practical question is how polyhedron solids randomly
pack? Baker and Kudrolli have carried out an interesting series of experiments to understand
random packings of polyhedral particles. Specifically, they experimentally investigated finite
but dense random jammed packings of Platonic-solid-like plastic dice and tetrahedron-like
ceramic particles. These packings were produced either by fluidization or vibration of particle
containers in order to achieve mechanically stable states under gravity. In particular, dense
random jammed states were obtained through vibrations of containers of particles and so-
called “random loose” packings were produced by randomly and sequentially adding particles
in a container. The authors measured the densities of the packings of the Platonic-like solids
and found that the density peaks for the cube-like shape, and monotonically decreases as the
number of faces of the particle increases. A similar trend was also observed in maximally
dense packings of frictionless ideal Platonic solids [9].

A notable difference was observed in the measured packing fraction for random jammed
packings of the tetrahedron-like dice in the current study (0.64) compared to that carried out
by Jaoshvili et al. (0.76) [13]. To explain this large discrepancy, the authors systematically
studied the effects of friction on the packing density using tetrahedron-like particles made of
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different materials. The authors claimed that their tetrahedron-like dice contained a higher
degree of friction compared to that in the tetrahedron-like dice packings investigated by
Jaoshvili et al. [13], and thus their packings should have a much lower density. It would also
be interesting to see to what extent the particular packing protocols and density-measuring
methods used by the two groups contributed to the density discrepancy. The present authors
also made an attempt to characterize the degree of disorder of the packings by measuring the
projected areas of the largest visible particle face in the top layer of the packing. It would
have been interesting if the authors could have provided additional packing characteristics,
such as the mean contact number, pair correlation functions, and orientational correlation
functions.

This work raises many interesting issues and questions for theorists. We are very far
from a complete theory of random packings of spheres, let alone for polyhedral particles. An
obvious question is how to generalize the well-studied methods for quantifying order/disorder
in sphere packings to disordered polyhedron packings. What are the configurations corre-
sponding to the maximally random jammed states and lowest density jammed states [3] of
polyhedron packings? Jaoshvili et al. [13] showed that their random packings of tetrahedron-
like plastic dice are essentially frictionless and isostatic (minimal number of interparticle con-
tacts) in a generalized sense. However, it is not clear whether packings of other polyhedron
particles (using the protocol of Ref. [13]) are also isostatic in this generalized sense. Can
one define mathematically precise jamming categories for packings of polyhedra and other
nonspherical particles? Another important issue is understanding the effect of friction in
polyhedron packings, which apparently is more significant than that found in sphere pack-
ings (for the same particle material) due to the larger contact regions between the particles.
Again, there are many challenges that lay before us that must be overcome to make progress
on a comprehensive theory of random packings of nonspherical particles.
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