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Thin elastic sheets are floppy. Therefore they can be easily deformed into 3D configurations. In 
some cases the bending deformation is “trivial” (think of a buckled ruler).  In other cases, such as 
in wrinkling of skin, the configurations are “interesting”, containing some typical length scale, 
much smaller than the system’s size. Finally, in some cases, such as in crumpling, or wrinkling-
cascades,  the  configurations  are  “surprising”,  consisting  of  multi-scales  and  often  focussed 
stresses.
Beyond the direct context of elastic sheets, these types of solutions can be vied as representatives 
of general ways of organizing matter and energy. The buckled ruler is a “laminar” solution – it 
does not contain scales much different from the system’s size with energy distributed over large 
length  scales,  the  wrinkling  is  a  “wavy”  solution,  with  a  single  length  scale  for  both 
configuration  and  energy  distribution,  the  wrinkling  cascade  is  a  hierarchical  type  of 
organization, switching between length scales, and, finally, crumpling is a “defect dominated”/ or 
“turbulent” organization, consisting of a continuum of scales with strong focusing of energy. All 
this variety of behaviors stems from the known, simple elastic energy functional of thin sheets, 
with only geometry and boundary-conditions selecting between them. It is therefore tempting to 
use thin elastic sheets as a model system from which we learn how geometry leads to different  
types of solutions in more complex fields. For example, the conditions for having or not having a 
crumpling solution are directly linked to the geometrical confinement problem [1], while the type 
of configurations of non-uniformly growing sheets are governed by an underlying embedding 
problem [2].
The  apparent  generality  of  thin  sheets  instabilities,  mentioned  above,  led  physicists  to  ask 
questions about this very “engineering system”: Is it possible to identify more general principles 
that govern shape selection “strategies” in thin sheets? Is classification of types of patterns useful 
and meaningful?
The study of crumpling represents a relatively successful such a research, showing the existence 
of “building blocks” of the global configuration. These are “d-cones” and “ridges”. The energy 
within such isolated “objects” was studied and properties of global crumpled state were predicted 
as ensembles of such elementary objects [3]. Such progress was absolutely impossible using only 
the basic elasticity field equations.
Two recent works have taken the first steps performing a similar treatment for multi-scale, or 
hierarchical wrinkling patterns. Such patterns are general, appearing along the edge of suspended 
films, curtains, blistering of delaminated films, and growing sheets. They consist of repeating 
“motifs”  in  different  scales,  suggesting  that,  similarly  to  crumpling,  it  could  be  worthwhile 
describing the global patterns as collections of elementary units. The basic motif is the splitting 



of a single out of plane buckled node of width/wavelength W into two nodes, each of width W/2.
The work by Schroll, Katifori and Davidovitch [4] is a theoretical and numerical study of such a 
single transition. The authors generate such an object (using specific boundary conditions) and 
study its energy distribution, shape and dominant length scales. They find two distinct domains: 
A stress-focusing,  crumpling-like  “core”,  connected  to  a  smooth  “diffusive”  zone  in  which 
energy  is  spread  over  a  large  area.  The  diffusive  zone  appears  when  the  in-plane  stress  is 
dominated by a single tensile component.
The authors find the typical scale over which the energy is spread (and the transition takes place)  
and  show  that  such  an  “object”  is  more  energetic  than  the  stress-focusing  structures  that 
dominate crumpling. They suggest that it is likely that the new object is the “second best” option, 
appearing when boundary conditions exclude the existence of the low energy crumpling-like 
structures.
A similar system was studied jointly by several European and US groups [5]This study was both 
experimental  and  theoretical  (scaling  arguments).  The  main  emphasis  in  the  work  was  the 
appearance of the same type of pattern in many systems, over an amazingly large range of scales, 
starting with confined Graphene sheets, up to meter-scale curtains. As in the work by Schroll, et  
al., they have defined the elementary structure naming it a “wrinklon”, obtained an expression 
(identical  to  that  calculated  by  Schroll)  for  its  energy  content  and  went  further,  calculating 
properties of a global hierarchical wrinkling pattern by a “superposition” of wrinklons. The work 
shows an impressive agreement between experimental data and predictions. It also demonstrates 
that the same treatment is applicable for sheets under a different stress state. This is shown for 
“heavy sheets” in which gravitation leads to different scaling then in the “light sheets”.
The works reviewed here represent a new trend in soft matter physics, which focuses on studying 
new general “surprising” cases of elastic instabilities. There is a truthful attempt not to stay in the 
demonstrative level, but to link the results to “real systems”. The scale-free nature of the elastic 
field allows mapping results  between systems of different  scales.  Therefore,  results  obtained 
from experiments on macroscopic scale are shown to be relevant to instabilities of Graphene 
sheets,  or  useful  in  constructing  materials  with  unique  mechanical  properties  (some  nice 
examples can be found in Soft Matter 6, 2010). Similarly, the role of such instabilities in the 
evolution  of  biological  systems is  studied  extensively.  The  results  reported  in  the  reviewed 
papers are, therefore, likely to be relevant to solid state physics, material science and biology. 
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