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Free volume theory is a successful approach to studying the entropy of crystalline
phases of hard spheres and disks (free area theory in the latter); a periodic structure is
chosen, the Voronoi cells of each lattice site are found, and then the volume accessible
to each sphere or disk confined to their cells is calculated to estimate the entropy and
the free energy, F = �TS [1]. This approach strictly prevents overlaps of the particles
at the cost of neglecting cooperative motion of groups of particles. For instance, if we
fix the volume fraction of hard spheres and compare the FCC and BCC lattices, free
volume theory predicts that the FCC lattice has a higher entropy. At first, this may seem
paradoxical – the volume fraction is the same, so there is precisely as much unused volume
in both lattices. But the volume is not used as e�ciently in the case of BCC. Recall that
the FCC lattice (or one of its stacking faults) gives the densest packing of hard spheres
[2]. Compare a fixed number, N , of spheres close-packed into an FCC lattice and a BCC
lattice. The former starts smaller than the latter; upon expansion to the same volume
fraction, the FCC lattice had to expand more than the BCC lattice and so there must be
more room for the spheres to move.8 G. CARLSSON, J. GORHAM, M. KAHLE, AND J. MASON
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Figure 5. The dendrogram for unlabeled disks. The numbers in-
dicate the order in which critical points appear as the disks shrink.
The approximate radius where each vertex and edge appear is given
in Figure 8.

final red energy minima appear at the outer extremities of the figure. The third
orange saddle point once more connects the space into a single component.

Figures 2 and 5 do not show all of the critical points of index one for five disks
in the unit square. Indeed, we identified five types of critical points of index one,
though only three of these change the number of connected components in the
configuration space. Figures 2 and 5 show precisely these three types of critical
points, since the remaining two do not directly a↵ect the connectivity of the space.

5. Part II: Higher index critical points

While the above section is concerned with the critical points of index zero and
index one and the relation of these to the dendrogram, the current section is con-
cerned with more general features of the configuration space. As mentioned in
Section 1, this requires the identification of the critical points of higher index. For
this purpose, we work with the same smooth function E defined above. Using
the MuPAD computer algebra system included in the Symbolic Math Toolbox for
MATLAB, we symbolically di↵erentiate E and set

F = ��E�2.

Since �E = 0 at the critical points of E, F = 0 at the critical points of E as well
and is strictly greater than zero everywhere else. Hence, we may find critical points
of E of any index by flowing down the function F to one of the zeros.

More specifically, our search begins from a random point in [0, 1]10. We symbol-
ically calculate the gradient of F with MuPAD and apply the conjugate gradient
method with the Polak–Ribière formula, using the secant method find the mini-
mum of F in the search direction on every iteration. This gives much more rapid
convergence to the local minima of F than the steepest descent algorithm.

Figure 1. The dendrogram connecting di↵erent packing topologies.
As the disk radius shrinks, new regions of configuration space open
up in the numerical order specified on the dendrogram. Figure from
arXiv:1108.5719.

In the paper by Carlsson, Gorham, Kahle, and Mason, the authors have delved signif-
icantly deeper into these subtleties. Considering only five hard disks in a square, they find
the space of configurations of the disks and show that this space is not always one piece. In
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other words, “you can’t get there from here” - there are classes of hard disk configurations
with the same area fraction which are not connected to each other. In statistical mechanics
we might say that these simple systems break ergodicity. They have presented their results
in a dendrogram, shown in Figure 1. Each square depicts a class of packings. The numbers
correspond to the order in which they become available as the disk size decreases. First,
only the very symmetric configuration 1 is allowed as soon as the radius r⇤1 is small enough
for the disks to fit. As the disk size shrinks, configuration 2 is allowed at a critical radius
r⇤2 , but it is not possible to move from configuration 1 to 2 at that radius! In fact, the
four di↵erent orientations of the disks in configuration 2 are not connected either until the
disks shrink to r⇤3 and the four separate classes all become one class, still separated from
configuration 1. And so this pattern continues: as the radius shrinks below r⇤4 configura-
tions 1-4 are all in the same part of phase space and any configuration can become any
other configuration. Counterintuitively, at a still smaller r⇤5 a new class of configurations
appear that are not connected to the others, an island of configurations that only upon
further reduction of the radius combines with the other configurations.

Not only is this surprising, but it suggests that the jamming transition may proceed
through a cascade of ergodicity-breaking changes in phase space. Compare this to the
Ising model where the order-disorder transition is characterized by breaking the phase
space into two disconnected pieces (up and down) in the thermodynamic limit. Can we
learn something from only five disks? Recall that the hard sphere melting transition can
be (and was) ascertained with only 32 spheres [3,4]. Like the disks, we are getting close.
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