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This paper by Berryman and Schilling [1] has been in the literature for a year now,
and is a valuable addition to the battery of techniques available to study nonequilibrium
processes by molecular simulation; but it seems not to have attracted much attention. In
the challenging field of “rare events”, there are three broad target areas, of increasing de-
gree of difficulty: (a) systems in equilibrium; (b) systems in a nonequilibrium steady state;
(c) systems in a nonequilibrium, nonsteady state. The approach proposed here is aimed at
the last, and perhaps most interesting category, and in tackling questions such as: what
happens, at the microscopic level, to a system after a sudden quench, or shock?

For equilibrium systems, it makes sense to speak of trajectories across a free energy
landscape, which may be defined in terms of a few coarse-grained order parameters. Inter-
est lies, firstly, in the determination of residence times and rate constants, and secondly in
the analysis of the reactive trajectories themselves, possibly including the construction of a
simplified kinetic model. A considerable literature exists regarding the efficient sampling of
reactive trajectories in this situation, for example by Transition Path Sampling [2]. The ex-
tension to driven systems which are in steady nonequilibrium states, perhaps with the aim
of calculating the flux associated with an infrequent event, poses a problem for any method
that relies on prior knowledge of the steady-state distribution. The situation is even more
challenging if the distribution itself is changing in time.

One of the few approaches that makes no assumptions about this distribution is For-
ward Flux Sampling (FFS) [3]. This employs the common technique of dividing the phase
space with a set of non-intersecting interfaces, level sets of an approximate “reaction coor-
dinate”, and generating trajectories that connect each interface with the next. Provided the
dynamics contains a stochastic element, each starting point on a given interface can gener-
ate a whole family of equally valid ongoing partial paths. Full trajectories are constructed
by combining these partial paths together. This gives the opportunity of preferentially sam-
pling the paths, to favour the reactive ones, while at the same time taking proper account
of the relative statistical weight of reactive and nonreactive trajectories. The overall trajec-
tories, and associated statistical weights, are built up progressively from one interface to
the next, in a manner reminiscent of some Monte Carlo methods for constructing polymer
chain configurations [4, Chapter 11]. This can lead to a phenomenal improvement in the
estimation of reaction rates, but there are some drawbacks. The paths tend to be highly
correlated, with many product states having their origins in just a few starting states. The
actual time taken for each partial trajectory will be different, and so the method is not well
suited to tackling explicitly time-dependent problems. Also, in practice, the number and lo-
cations of the interfaces should be optimised [5], which relies on collecting some preliminary
information from the runs.



Berryman and Schilling tackle the last two of these issues by abandoning the restriction
that partial paths should begin and end at an interface, and instead making them of fixed
duration in time. Attention is switched from the interfaces to the bins or compartments
delimited by them. The number of new partial trajectories starting in each bin is calcu-
lated, at each time step, in a way that generates a sufficiently large, and constant, number
of forward-going trajectories: this is the factor biasing the system towards rare-event sam-
pling. In addition, starting points within the bins are chosen in a bias-free way that reflects
their statistical weight. This effectively compensates for the fact that the paths that arrived
in a given bin will have different weights, because they originated in any of several other
bins. The method uses the information about the originating bin of a configuration, in the
previous step, but never needs to look further back than this, because ongoing trajectories
have equal statistical weights, by construction.

The algorithm is simple to implement, and the authors present arguments that it scales
well as the number of bins becomes large, allowing a fine-grained description of the order
parameter. The various conditional probabilities associated with partial paths may be used
to discuss coarse-grained kinetic models (whether a Markovian assumption is involved or
not). Naturally, as for other methods of this kind, including FFS and Transition Interface
Sampling [6], it will work best if the chosen “reaction coordinate” is not too different from
the “true” one. Nonetheless, the method offers exciting new prospects in the modelling of
nonequilibrium processes in a wide variety of systems.
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