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1 Introduction

Understanding the mechanics of periodic solids is one of the fine achieve-
ments of condensed matter physics. Periodicity is the key to developing a
tractable solution to the problem of the dynamics of a (possibly infinite)
lattice of masses coupled by harmonic springs. The reader can find an ex-
cellent discussion of this problem in Solid State Physics by Ashcroft and
Mermin [1]. A broader discussion of the generalized elasticity of liquid crys-
tals and elastic solids is found in Principles of condensed matter physics by
Chaikin and Lubensky [2], and, here too, one relies on translational symme-
tries imposed by periodic structures. What happens when one breaks these
rules to consider the elasticity of disordered condensed states of matter?
In this letter, M. Wyart and collaborators explore such a problem, which
presents fundamentally interesting theoretical issues, and has relevance to
understanding the mechanics of a wide variety of systems, including cova-
lent glasses, such as those composed of Silicon or Germanium [3, 4], granular
matter, and even filament networks such as those found in the cytoskeleton
of eukaryotic cells.

To begin a discussion of the mechanics of amorphous solids, it is help-
ful to recall Maxwell’s criterion for rigidity in a network of point-like nodes
coupled by central forces. The question to be addressed is how many such
interactions between nodes are necessary to ensure that the system is rigid.
By rigid, we mean that there are no deformation modes of the network,
other than its rigid body translations and rotations, that incur zero energy
cost. In the literature, such nontrivial zero energy modes of deformation are
called “soft,” while those modes that cost finite energy are “rigid.” Given
that there are N nodes in d dimensions, we see immediately that there are
Nd degrees of freedom for the system. The criterion of a zero energy defor-
mation sets Nc constraints on these degrees of freedom since that number of
interparticle distances must not change under a soft deformation. If there
are, on average, z interactions between a node and its neighbors, there are

Nc =
zN

2
(1)
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constraints. The factor of one-half comes from that fact that each interaction
is shared by two nodes. Each constraint reduces by one the number of
free degrees of freedom. Thus, the constraints leave dN − Nc free degrees
of freedom. Combining this result with Eq. 1 and neglecting the small [
d(d+1)/2] number of rigid body motions of the entire system of N particles,
we see that when z < zc = 2d, there will be remaining under-constrained
and thus soft modes of the system. For z > zc we expect there to be no such
floppy modes. A system at the boundary z = zc is referred to as isostatic.

The authors performed a numerical experiment on two dimensional net-
works of about 104 particles connected by harmonic springs and brought near
the isostatic limit. To make the network, they compressed (numerically) a
set of (bidisperse, in order to avoid crystallization) disks. When these disks
were jammed, they were replaced by nodes at their centers. These nodes are
then connected to a subset of their nearest neighbors by harmonic springs
so that z ≈ 5.5. Then the network is pruned so that z is reduced toward
the isostatic point z = 4.

2 The scaling properties of the stress strain rela-
tion

The authors examine the shear stress (nondimensionalized using the spring
constants of the internode springs) as a function of the applies shear strain
γ. They do this on both sides of the isostatic point by examining the stress
strain relation for both floppy networks with soft modes (δz = z − zc < 0)
and stiff ones (δz > 0) that do not. For the floppy networks, there is a
strongly non-Hookean collective response of the network to applied strain:
Below a certain critical value of the strain γ? there is no stress, as one would
expect for a system that can accommodate the imposed deformation via soft
modes that do not store elastic energy. They find a scaling relation

γ? ∼ |δz|β. (2)

Note the correspondence of this notation to the standard treatment of the
scaling of the order parameter field with reduced temperature at a second
order critical point. Here γ? plays the role of the order parameter and the
distance from the isostatic point parameterized by δz plays the role of the
reduced temperature. As suggested by Eq. 2 γ? goes to zero continuously
as one approaches the isostatic point from below, δz → 0−. At the isostatic
point, they find that the system responds nonlinearly to applied strain with
the stress growing parabolically: σ ∼ γ2.
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Following up on the analogy to critical phenomena, the authors propose
and provide convincing evidence that the stress-strain relations for systems
near the isostatic point can be collapsed onto a single universal curve

σ = |δz|γf±
(

γ

|δz|

)
, (3)

with f±(x) scaling functions above and below the isostatic point. The key
point is that the onset of a collective elastic response of the network as δz
is increased through zero occurs via a second order critical point (at zero
temperature), with all of its attendant scaling properties.

3 The displacement field in floppy and isostatic
networks

The authors move on to discuss the nature of the displacement field in the
strained network. In a uniform elastic continuum, one expects to observe
affine deformation in response to uniformly applied strain at the bound-
aries. If one where to take an elastic rectangle and, by moving the top
boundary parallel to itself, deform it into a parallelogram, one would expect
any internal rectangle of elastic material to deform into a similarly deformed
parallelogram. Under these circumstances, the displacement field in elastic
equilibrium is expected to be homogeneous in space. In Fig. 1b the authors
show the displacement field of a uniformly strained isostatic network. It is
anything but uniform! There are large nonaffine deformations.

The authors consider a new displacement field that subtracts off the ex-
pected (and uniform) affine displacements of the nodes: δRin.a. = Ri−Riaffine

is the vector representing the nonaffine part of the displacement of particle i.
They compute from this a (pseudo-)scalar quantity, δVn.a. representing the
local rotation of nearest neighbor springs under the imposed shear strain.
Remarkably, this quantity diverges at the isostatic point:

δVn.a. ∼
1√
|δz|

. (4)

At first this seems quite odd. As one approaches a stiff network (δz → 0−),
there are larger and larger local rotations associated with the nonaffine mo-
tion of the system. The argument made by the authors is that larger non-
affine deformations are indeed needed to accommodate the imposed strain
as the floppy network becomes more constrained. The rigid parts of the net-
work act like a lever to generate these motions. The authors also present an
elegant argument to understand this observation for networks with δz > 0.
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4 Summary

There are two key points made in this letter. The first, based on their nu-
merical explorations, is that stiff and floppy networks (on either side of the
isostatic point) are controlled by a single second order critical point that
can be characterized by two independently determined critical exponents.
Secondly, these two exponents which describe the nonaffine nature of the
deformation field and the elastic modulus control all other elastic proper-
ties of the material near the isostatic point. These results have profound
implications for organizing a general framework for thinking about the me-
chanics of disordered media near the isostatic point, and have implications
for a number of physical systems of current interest.
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