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The universe on the largest scales appear to be spatially flat to within 0.5%
(see http://map.gsfc.nasa.gov/universe/uni_shape.html). The angles of
geodesic triangles therefore add to 180° and geodesic circles of radius r have
circumference 27r. Soft matter, on the other hand, is rife with systems that are
spatially curved and topologically rich [I]. Examples include ordered states of
particles that self-assemble at the interface between two distinct fluids (colloid-
stabilized emulsions), multi-electron helium bubbles, viral capsids [2] and block
copolymer vesicles. Crystalline colloidal arrays are particularly revealing be-
cause 3d images can be obtained by confocal microscopy. Many shapes are pos-
sible for colloidal crystals. Assembly on spherical droplets yields crystals on the
the surface of as ball - the 2-sphere S? whilst assembly on capillary bridges yields
crystals on the Delaunay constant mean curvature surfaces of revolution: the
sphere, the cylinder, the catenoid, the nodoid and the unduloid [3]. Crystalline
order on the 2-sphere has proven very rich [I]. The topology of the 2-sphere
makes it impossible for the crystalline ground state to be a perfect triangular
lattice: the sum of the departure of the coordination numbers of each particle
from the triangular lattice value of 6 must be 6 times the Euler characteristic
x = 2. Particles with coordination number ¢ differing from 6, in a crystalline
background of 6-fold coordinated particles, are topological defects called crys-
talline disclinations: they have strength 1/(6 — ¢) or disclination charge 6 — c.
The topological constraint noted above has many solutions: one can have any
number of 6-fold coordinated particles together with a collection of defects such
as 3 particles of coordination number 2 (glue two spherical triangles together to
form a sphere), 4 particles of coordination number 3 (the tetrahedron or vari-
ants), 6 particles of coordination number 4 (take a close look at the spherical
triangulation provided by the dark grid lines on a basketball) or 12 particles of
coordination number 5. The latter solution is the most common as it utilizes
the minimum defect charge (41). Its dual Voronoi map contains 12 pentagons,
as found on a standard soccer ball and in carbon fullerenes/bucky balls [4]. On
a surface with the topology of a disk (one hole cut out of the 2-sphere) the Euler
characteristic changes to 1 and the excess coordination number changes to 6.
Crystalline arrays of air bubbles on the parabolical surface of a rotating soap
film are one experimental realization. The simplest solution to the topological
constraint in this case is 6 particles of coordination number 5 along with any
number of 6s.

Bruss and Grason analyze the structure of a very different looking 3d system:


http://map.gsfc.nasa.gov/universe/uni_shape.html

a bundle of filaments all with the same helical twist, a crucial structural motif
in both macroscopic materials (cables) and synthetic and biological nanomate-
rials (fibrous proteins). What does this have to with order on curved surfaces?
Imagine reconstructing the bundle as a collection of 2d slices as in a confocal
scan. One could take horizontal slices but the filaments are better viewed along
slices that minimize their separation. Since the filaments are helical and there-
fore tilted there is an optimal tilt angle for the slices that minimizes the spacing
between neighboring filaments. The authors derive the tilt angle, the height dif-
ference between nearest neighbor filaments on an optimal slice and an elegant
formula for the minimum spacing in terms of differences in the respective radial
and azimuthal coordinates. This formula makes it clear that there is a natu-
ral curved surface associated with the filament packing problem. The original
problem is thus mathematically mapped to a different packing problem on this
associated curved surface. What surface arises? It has the shape of a silo or
bullet - essentially a spherical cap that smoothly connects to a cylinder with
radius that asymptotes to a constant (given by the inverse pitch of the helical
twist of the individual fibers). The filament bundle problem turns out to be
isomorphic to the problem of the densest packing of discs on the equivalent silo.
This mapping is useful because one can then apply the machinery and intuition
of optimal configurations on curved surfaces. In particular the spherical cap
of the silo corresponds to the geometric structure of filaments near the core of
the bundle. This connects to the crystalline structure of particles on disk-like
topologies discussed above. Near the core of the bundle we expect filaments
surrounded by fewer than 6 other filaments and we expect the total departure
of the coordination number from 6 to also be 6.

Bruss and Grason check this with a deterministic packing simulation. They
find bundles with an inner core of 2 4-fold coordinated filaments and 2 five-folded
coordinated filaments, 1 4-fold coordinated filament and 5 6-fold coordinated fil-
aments and a variety of structures with 6 five-folded coordinated filaments, dif-
fering in their exact configuration and symmetry. Far from the core all filaments
are 6-fold coordinated and approximate a regular triangular lattice.

If one could design a capillary bridge with the shape of the bundle-equivalent
silo and then adsorb colloidal particles on this surface which crystallize then one
could compare the bundle geometry to the configuration of colloidal particles
and the defect structure of the filament packing to the Delaunay triangulation
of the colloidal crystal.

We see that two-dimensional geometry and topology continues to provide
powerful tools in analyzing the physical structure of soft matter assemblies as
beautifully illustrated in this paper. The cosmologists must be jealous. Soft
matter assemblies are hardly ever flat and spatial curvature frequently leads to
novel order.
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