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What kind of ground state can a collection of quantum particles have, if that state exhibits

no order? That question, pressed upon us first by the fact of liquidity of condensed helium at

zero temperature, continues to have new answers in current work in quantum information

theory. In particular, the work of Schuch et al. gives us new insights into the venerable

Resonating Valence Bond (RVB) paradigm.

What RVB refers to as a “bond” is just the occurrence of singlet (zero angular momentum)

pairing between two electron spins, not the full meaning of the bond in chemistry. The RVB

idea is originally Pauling’s. In his effort to understand why benzene does not dimerize,

that is, why the π electrons do not choose particular partners and lower the symmetry of

the ring to three-fold, he invoked the quantum-mechanical idea of resonance – degenerate

pairing patterns (just two for benzene) in quantum superposition. Anderson extended this

reasoning to solid state physics, to explain situations where symmetry breaking may not

occur. His famous conjecture that the triangular antiferromagnetic Heisenberg lattice would

fail to order, and would be described by an RVB state superposing a macroscopic number of

different dimer configurations, was just barely wrong. But the fact that the three-sublattice

Neel state slightly outcompetes the RVB spin liquid does not preclude RVB from being the

right answer in a slightly different setting.

In any case, Anderson’s work made RVB available as a paradigm for disordered quantum

states, leading to concerted efforts, for example, to employ it for understanding the cuprates.

In the original setting of Heisenberg magnets, it was understood that the triangular AFM

was somehow not quite frustrated enough; we now are essentially certain that the Heisenberg

AFM on other frustrated 2D lattices, for example Kagome, indeed has an RVB spin-liquid

ground state.

Schuch et al. make this essentially airtight in the current work, by exhibiting a Hamil-

tonian on the Kagome lattice for which the short range RVB state (dimers only connecting
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nearest neighbors) is proved to be the ground state, and to have other interesting proper-

ties. The proofs are almost mathematically rigorous, some parts requiring the assistance of

some extremely compelling numerics. This paper provides an intimate linkage between the

RVB paradigm and other recently introduced paradigms for topological quantum ordering,

including that coming from error correction code theory provided by Kitaev and others. But

this paper shatters the necessity of a connection between frustration and RVB: its Hamilto-

nian is in fact by construction “frustration free”, the RVB ground state is the lowest energy

state of every term of the Schuch et al. Hamiltonian!

The PEPS (Projected Entangled Pair State) methodology that is used here looks special-

ized, but has rather transparent defining principles and has constructive and easily checkable

consequences. The starting principle is that states that are candidates for quantum spin liq-

uids on the one hand, or for the realization of topological order on the other, should obey

the area law, which says that the entanglement between two regions of the lattice should be

confined to near the boundary between the regions. The short range RVB itself obviously

obeys the area law, but the PEPS construction is a more all-encompassing ansatz from which

RVB and many other states can be produced. The projector scheme is powerful enough to

give, from the same starting point, three very different looking models, with their associated

states; first, the Kitaev toric code model; second, the dimer model of Rokhsar and Kivelson;

third, a new model that has the short range RVB state as a ground state by construction.

In fact it gives something even more powerful: a family of models that interpolate smoothly

from the first to the second to the third model.

The last of these interpolations is a real curiosity. The dimer model is one in which, by

fiat, different dimer coverings of the lattice are orthogonal. Part of the complexity of the real

RVB model is that different dimer coverings have a finite inner product. Therefore, what

is found is a family of models for which the degree of orthogonality of different coverings is

varied continuously. The PEPS methodology makes available this interesting interpolation

of states, and the associated projectors that force these states to be the ground states.

PEPS also permits easy numerical calculations of correlation functions, and other quanti-

ties, from which it is quite evident that there is no phase transition along this interpolation.

Thus, the RVB ground space inherits all the interesting combinatorial features of the toric

code: the ground space degeneracy is topological, being one on the sphere and four on a

torus, independent of lattice size; all states in the ground state manifold are indistinguish-
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able locally, and incapable of being transformed into one another by local means; and the

excitiations above the gap are abelian anyons (but the numerics are not capable of giving

direct evidence that the final RVB model is gapped).

A few final thoughts about the local Hamiltonian that gives this RVB state. Such pro-

jector constructions have a history going back at least as far as Affleck, Kennedy, Lieb, and

Tasaki, but perhaps no previous ones have achieved the complexity of Schuch et al.; their

projectors are rather extended structures involving whole patches of the lattice – involving

19 spins each. But as I said above, they formally are completely unfrustrated. The projec-

tors act not by frustrating, but by declaring a lot of non-frustrated local arrangements to be

illegal. For me, this looks a lot like a quantum verson of what happens with the matching

rules in Penrose tilings: by forbidding enough local arrangements that lead to simple order-

ing, all ordering is forbidden, and something new (in Penrose’s case, quasiperiodicity) must

emerge.
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