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Most signals are compressible because the amount of information in the signal is

typically much smaller than than the number of bits in the signal (hence, the ubiq-

uity of jpeg, gif, and zip files). The standard way to perform signal processing is to

acquire the complete signal first, and then compress it. However, there are many sit-

uations where measurements are expensive, so that it would be highly advantageous

to avoid acquiring the complete signal while still obtaining the relevant information.

Compressed sensing enables one to do this [1].

For a compressible signal, there is a basis in which the relevant signal of N bits is

made up of r ones and N � r zeros, with r ⌧ N . (For instance, a message with

blocks of many ones followed by blocks of many zeros is sparse in the basis in which

the new “one” denotes a change in the original signal.) In compressed sensing, to

determine both the basis in which the vector is sparse and the vector in the sparse

basis, one takes M measurements which are dot products of the signal (sent in any
1



2 STATISTICAL MECHANICS OF COMPRESSED SENSING

basis) with randomly chosen vectors, and then looks for a signal that minimizes

both the error of the vector reconstruction and is maximally sparse. The field of

compressed sensing took o↵ when it was proven that successful reconstruction of a

compressible signal is achieved tractably by minimizing the L1 norm (sum of the

absolute values of the entries of the vector) subject to the constraint that the dot

products agree with the measurements, and, moreover, the reconstruction is robust

to noise, for M > r log2 N [2, 3].

The relevance of statistical physics to compressed sensing arises because the com-

pressed sensing process is a minimization problem with quenched randomness which

can be treated using the replica formalism used for spin glass problems [4, 5]. The

quenched disorder that is averaged over arises from the random vectors used for the

dot products and/or from the choice of signal. In the limit M, N ! 1, there is

a phase transition as a function of ↵ = M/N ; there is a critical value ↵c above

which the reconstruction succeeds in reconstructing the original vector with high

probability; for ↵ < ↵c the reconstruction fails with high probability.

The statistical mechanical approach does not just provide another way of interpreting

known results; it has enabled compressed sensing to be improved. The papers by

Krzakala et al. [6, 7] show that (1) message-passing algorithms similar to those used to

solve satisfiability problems can be used to do the optimization process more simply

and e�ciently than previous proposals, and (2) the reason why r log2 N samples are

needed (instead of the r samples that are strictly necessary to encode the amount of

information present in the signal) is that the optimization algorithms get “stuck” in a

metastable state, just as a statistical mechanical system near a first-order transition
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can get “stuck” in a phase with higher free energy until there is nucleation of the lower

free energy phase. Krzakala et al. present an algorithm that “nucleates” successful

reconstruction and achieves the asymptotically optimal result that the number of

measurements needed is r instead of r log2 N . Thus, statistical mechanics techniques

not only yield new insight into compressed sensing, but they also provide a means

for improving the performance of the technique.
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