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Hofstadter’s butterfly has been a holy grail of mesoscopic physics since
the 1980’s. The self-similar electronic energy spectrum of a two-dimensional
lattice in a magnetic field, reminiscent of the fractal pattern of a butterfly
wing, was an exercise in mathematical physics when Douglas Hofstadter de-
scribed it in 1976. The structure appears because of a commensurability
of the lattice constant a and the magnetic length lm =

√
h̄/eB, which for

atomic-scale lattices would require impossibly large fields of thousands of
Tesla. The mesoscopic scale of quantum dots and superlattices brought the
field scale down by several orders of magnitude, and many research groups
searched for signatures of the minigaps that the periodic potential should
open within a broadened Landau level.

The search remained largely inconclusive, as evidenced by the titles of
some of the experimental reports: “chasing the Hofstadter butterfly”, “a
glimpse of Hofstadter’s butterfly” — a 2004 PRL [92, 256801] from the
Stuttgart group gave perhaps the strongest evidence for Landau level sub-
structure in a GaAs/AlGaAs heterostructure. The commensurability effects
on the magnetoconductance that are easiest to observe, the socalled Weiss os-
cillations, involve not the magnetic length but the cyclotron radius mvF/eB.
These are classical rather than quantum effects of a magnetic field (no h̄
enters in the commensurability condition). The quantum effects are very
sensitive to lattice inhomogeneities, and since the two-dimensional electron
gas is buried 100 nm inside the heterostructure, it is very difficult to accu-
rately transfer a periodic potential much below the micrometer scale.

Enter graphene. The conduction electrons in the carbon π-orbitals are
directly exposed to the substrate, allowing for the creation of a highly homo-
geneous periodic potential by the Moiré effect: If the substrate has the same
honeycomb lattice as graphene, but slightly misaligned or with a slightly dif-
ferent lattice constant, then the the two lattice structures interfere to produce



a superlattice with triangular symmetry. For graphene on boron nitride the
periodicity of the superlattice is about 10 nm, equal to the magnetic length
at 5 Tesla — an ideal range to search for quantum commensurability effects.

Last December two groups reported the results of this search. Andre
Geim’s group (Manchester University) used monolayer graphene, while Philip
Kim’s group (Columbia University) used bilayer graphene, with similar find-
ings. A vanishing of the longitudinal conductance σxx with quantized trans-
verse (Hall) conductance σxy was used as a probe of the opening of minigaps
within a Landau level. The minigaps are largest if the flux φ through a unit
cell (in units of h/e) is close to a rational number p/q, with small integers p, q.
The resulting energy spectrum (see figure 7 of arXiv:cond-mat/0607096)
repeats in a self-similar way. The zero-field region where σxy changes sign
repeats at nonzero field (figure 4b of arXiv:1212.4783). Most strikingly, in
the monolayer graphene experiments a clone of the Dirac point appears away
from charge neutrality (figure 2 of arXiv:1212.5012).

The Dirac point in monolayer graphene is special, because it supports a
zero mode — a Landau level that stays pinned at that energy (E = 0), while
the other Landau levels move up or down with increasing magnetic field. A
periodic potential opens a gap at the Dirac point, but the gap closes again and
the zero mode reappears for a range of magnetic fields around φ = 1/q. This
is the same commensurability effect that produces the self-similar Hofstadter
butterfly, but now for massless Dirac electrons. Theoretical simulations have
predicted a variety of other features of the Dirac-Hofstadter spectrum, that
are now accessible for experimental observation, such as the reappearance of
the zero-field conical dispersion at finite magnetic fields.

The experiments are also a timely contribution to the emerging field
of topological insulators. The quantization of the Hall conductance σxy =
Q × e2/h in Hofstadter’s butterfly is determined by a topological quantum
number Q (called Chern number or TKNN invariant), computed as an in-
tegral of Bloch states over the Brillouin zone. In the original quantum Hall
effect, Q is more mundanely determined by the number of occupied Landau
levels, without requiring notions of topology. Haldane’s quantum Hall effect
without Landau levels, observed very recently in a magnetic topological insu-
lator (Science doi 10.1126/science.1234414), is another variation on the
quantum Hall effect where the topological origin of the quantization becomes
explicit.


