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The   term  “chirality”   refers   to   the asymmetry between right- and left-handed objects.  This 
concept was first introduced by Lord Kelvin, who wrote: 

 
I call any geometrical figure, or group of points, chiral, and say that it has 
chirality, if its image in a plane mirror, ideally realized, cannot be brought to 
coincide with itself. 

 
In other words, an object is chiral if it is different from its mirror image, and cannot be 
superposed on its mirror image through any combination of rotations and translations.  Since the 
time of Kelvin, chirality has become a central concept in many areas of science, from 
microscopic to macroscopic length scales.  In particle physics, it characterizes an asymmetry in 
the weak nuclear interaction.  In organic chemistry, it characterizes molecules that have distinct 
isomers that are mirror images of each other.  In liquid-crystal science, it characterizes phases 
with helical modulations, which are usually (but not always) driven by the chiral structure of the 
constituent molecules.  In biology and medicine, it characterizes the left-right asymmetry of the 
human body and the different effects of chiral drugs. 

In the classic definition of Kelvin, chirality is a yes-or-no question, not a quantitative 
question—an object either is or is not equivalent to its mirror image.  Indeed, when I first began 
working in this field, I was told  that  the  statement  that  a  molecule  is  “slightly  chiral”  is  absurd,  
like   the   statement   that   a   woman   is   “slightly   pregnant.”      Nevertheless,   for   physicists   who   are  
accustomed to working with order parameters and phase transitions, it is natural to seek a chiral 
order parameter, which would describe how the symmetry between an object and its mirror 
image is broken. 

We would normally assume that such an order parameter should be a pseudoscalar, a 
mathematical object that has no direction and that changes sign under reflection.  The magnitude 
of this pseudoscalar would describe how much an object is different from its mirror image, and 
the sign would represent which way the symmetry is broken, i.e. whether the object is right- or 
left-handed.  As an example, for a mixture of mirror-image isomeric molecules, the chiral order 
parameter could be the difference of concentrations of right- and left-handed molecules.  More 
complex examples of chiral order parameters for geometric objects are discussed in a review 
article.1  I have worked on constructing chiral order parameters for Langmuir monolayers,2 
helical polymers,3 and bent-core liquid crystals.4 

Although pseudoscalar chiral order parameters have been defined for many types of objects, 
these order parameters consistently have certain problems: 

 
1. In general, it is possible to continuously transform an object into its mirror 

image without ever passing through an achiral state (by analogy with turning a 
rubber glove inside out).  As that transformation progresses, the chiral order 
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parameter must continuously change from a positive to a negative value, and 
hence must pass through zero.  Hence, any chiral order parameter has false 
zeroes—states where the order parameter is zero even though the object is 
chiral. 

2. For a small but important subset of chiral objects, we have some intuitive 
sense of handedness.  As an example, the normal B conformation of DNA is a 
right-handed double helix.  However, there is no general way to connect a 
positive or negative chiral order parameter with an intuitively right- or left-
handed structure. 

3. Many objects are not chiral by themselves, but they become chiral by their 
relationship with their environment.  For example, a three-dimensional statue 
of the letter F floating in space is not chiral, but it becomes chiral if it is lying 
on the floor.  We can certainly define a chiral order parameter for the 
relationship of the F with the floor, but what can we say about the F by itself?  
Does it have some chiral susceptibility to the floor? 

 
These types of issues inspire the current paper by Efrati and Irvine.5  They begin with the 

simple example shown in the figure below (from Fig. 1 in their paper), composed of two rubber 
sheets stretched in orthogonal directions and then glued together.  This object is certainly not 
chiral; it has mirror planes along the two stretching directions.  When the square II is cut out, it 
forms a saddle shape that is not chiral; it still has the same two mirror planes.  However, when 
rectangular strips III and IV are cut out, they are chiral, forming left- and right-handed helices 
respectively.  We could say that the relationship between the stretching directions and the cutting 
directions leads to chirality (just as in point #3 above).  Equivalently, we could say that each 
helix III or IV is composed of copies of the saddle II connected together, and the helical 
arrangement of these saddles leads to chirality. 

Efrati and Irvine go further than that.  They argue that the key geometric feature of the saddle 
II is how it couples flow in different directions to rotations.  The direction of flow is given by a 
vector, and the rotation is given by a pseudovector.  Hence, the relationship between the 
direction and rotation must be given by a second-rank pseudotensor, which they call the chirality 
tensor 𝜒.  For the square II, this chirality tensor can be written as  

𝜒 = ൭
𝑐 0 0
0 −𝑐 0
0 0 0

൱, 

which indicates that 
flow along the x-
direction induces 
right-handed (+) 
rotation about the x-
axis, while flow 
along the y-
direction induces 
left-handed () 
rotation about the y-
axis.  For a 
rectangular strip cut 
along any arbitrary 
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axis 𝑛ො, the pseudoscalar order parameter can be defined as the chirality tensor contracted with 
𝑛ො⨂𝑛ො (which we might call the cutting tensor).  As an example, strip IV has a cutting axis 𝑛ො = 𝑥ො 
and hence a pseudoscalar of +𝑐, while strip III has 𝑛ො = 𝑦ො and hence a pseudoscalar of – 𝑐. 

Efrati and Irvine provide several examples of how to construct pseudotensors to describe 
different types of objects, including surfaces embedded in space, 3D director fields, curves 
embedded in space, and metamaterials composed of semicircular wire segments.  The example 
of metamaterials is particularly important because it involves many wires with various 
orientations.  Each wire has a pseudotensor, which must be rotated into the correct orientation for 
that wire, and then the rotated pseudotensors are averaged to give the pseudotensor for the 
composite.  This procedure illustrates how the pseudotensor approach can describe materials 
composed of units with a partially ordered distribution of orientations.  Efrati and Irvine further 
argue that the pseudotensor can change sign without ever passing through zero, representing a 
rubber glove that turns inside out without ever passing through an achiral state. 

I can imagine applying this approach to many problems in materials science where complex 
shapes interact to give novel behavior.  For example, bent-core liquid crystals have banana-like 
shapes, similar to the wire segments discussed here, which couple together directions and 
rotations.  If bent-core molecules were doped into a cholesteric helix, how would they align with 
respect to the helical axis and affect the pitch?  One might be able to answer that question by 
constructing pseudotensors for the bent-core molecules and the cholesteric helix and seeing how 
they interact. 

My   main   reservation   about   this   paper   concerns   the   terminology   of   “chirality   tensor.”      It  
seems to me that the concept of chirality, as defined by Kelvin, is inherently isotropic rather than 
directional:  it requires searching over all orientations to see if an object can be superposed on its 
mirror image.  That search leads to the isotropic average over all orientations, which corresponds 
to taking the trace of the pseudotensor 𝜒.  The full pseudotensor is a more general concept than 
just its trace.  For that reason, I think it should have a different name—perhaps  the  “twist  tensor”  
to signify that it is associated with twisted shapes that have an intuitive sense of handedness in 
some direction, or the “chiral   susceptibility”   or   “pre-chirality   tensor” to signify that it can be 
combined with another direction in space to give chirality. 

A second reservation is how general this concept will be.  In organic chemistry, most chiral 
molecules are not simple bent or helical shapes, but rather are complex irregular arrays of atoms.  
I’m  sure  it’s  possible to  define  a  pseudotensor  for  any  such  molecule,  but  I’m  not  sure  whether  
such a pseudotensor would be useful.  Considering that such molecules occur in an isotropic 
liquid anyway, it might be better to stick with a pseudoscalar description for such systems. 

Despite  these  reservations,  I’m  quite  impressed  with  the  mathematical  concept  that  Efrati  and  
Irvine have introduced.  I look forward to seeing where it can be applied in future studies. 
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