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The ability to isolate quantum many body systems and study their dynamics, such as in

ultra cold atomic gases, has raised fundamental questions on the approach to thermodynamic

equilibrium in a closed system. Typically, a system with sufficiently large number of degrees

of freedom is expected to come to thermal equilibrium (thermalize) even when it is isolated.

For quantum systems that thermalize, the Eigenstate Thermalization Hypothesis (ETH) [1]

states that thermalization is evident even in a single eigenstate. Expectation values of local

physical observable, when taken in an eigenstate, are equal to that in the Gibbs ensemble

with the same average energy.

However, not all interacting many bodes systems thermalize. Besides the obvious ex-

ception of integrable systems with specially tuned Hamiltonians, a more generic route to

realizing a non-thermalizing system is via localization. Historically, Anderson motivated the

study of localization in his 1958 paper, in part, by pointing out that it provided a physi-

cal example of a non-ergodic system. More recently, localization in interacting many body

systems with disorder (or many body localization - MBL) was argued for by Basko, Aleiner

and Altshuler. For example, consider a tight binding model of electron hopping in 1D with

random site potentials. In the absence of electron-electron interactions, it is well known

that all single particle states are localized and a many body eigenstate is simply obtained

by occupying a set of localized states. With weak interactions, the localized nature of the

eigenstates is argued to remain - i.e. . the many body eigenstates can be thought to be only

slightly modified from those for the non-interacting problem.

The absence of thermalization of MBL systems liberates their eigenstates from the ETH,

opening the door to new possibilities that go beyond the standard lore of statistical physics.

The featured paper explores new phenomena that only appear in the presence of many body

localization.
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FIG. 1: A schematic phase diagram of the 1D quantum Ising model, adapted from the featured

reference. In the absence of disorder, on increasing temperature (vertical axis) one encounters

Phase I, a paramagnet where states are extended. Increasing disorder leads first to the MBL

paramagnet (Phase II) and then to Phase III which is also localized, but in which the magnetic

moments order.

For concreteness, consider a one dimensional system, the quantum Ising chain:

H = −
∑
i

(Jiσ
z
i σ

z
i+1 + hiσ

x
i ) + . . .

where the dots refer to additional terms such as V σx
i σ

x
i+1. In their absence the problem

can be mapped to one of noninteracting fermions which displays special features. The added

terms convert this into a generic, interacting Hamiltonian. In the clean limit, when all the

couplings are independent of position there are two zero temperature phases - a ferromagnet

e.g. at J � h and a paramagnet at J � h. At any finite temperature however the model

has a single phase, given the low dimensionality. Thus, excited states which differ from the

ground state by a finite energy density, (which corresponds to finite temperature by ETH)

evolve smoothly on tuning parameters.

However, the featured reference considers the case of random couplings. With sufficiently

strong disorder, when MBL takes over, one can obtain qualitatively new phenomena as

sketched in the figure. The vertical axes is energy density, which for a system that thermal-

izes, can essentially be thought of as temperature. The horizontal axis is disorder strength.
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Say we begin at the origin - a clean system at zero temperature in the ferromagnetic phase.

Now, increasing temperature leads to a paramagnet, which is delocalized. This is the Phase

I, and in a clean system the only phase at finite temperature. However, consider now increas-

ing disorder, that leads to many body localization. On moving in the horizontal direction

one first encounters the localized paramagnet (Phase II). Interestingly, there is a third phase

as well - a localized phase with magnetic order. The ordering pattern is spin glass like, since

although the Ji can be taken positive, one is considering a finite energy eigenstate. By mag-

netic ordering we mean that spin correlation functions 〈σz
i σ

z
i+r〉 in an eigenstate acquires

long range order in the thermodynamic limit. These phases are established in the featured

reference by first studying special limits and then arguing for perturbative stability on in-

cluding more generic interactions. Thus, there is a transition between MBL states with

rather different character (Phase II and Phase III) on tuning disorder strength. It has been

argued here and in Ref.[2] that the transition (red line) can be continuous and is also an

MBL state, similar to the critical ground state of the disordered problem.

Interestingly, this also implies the persistence of a topological distinction between phases

in the high energy eigenstates. The 1D transverse field Ising model can be mapped, via a

Jordan Wigner transformation, to neutral fermions that hop and experience pairing on the

1D lattice. The two ground state phases are, in terms of fermions, two superconductors with

a topological distinction. The ferromagnet corresponds to a topological phase with Majorana

zero modes at the edges, while the paramagnet corresponds to the trivial phase. Usually, one

expects that such topological phases are protected by a gap and that any finite temperature

will cause their edge modes to leak, destroying their defining properties. However, localizing

the bulk excitations leads to a topological distinction between finite energy eigenstates.

Several open questions remain, some of which are being actively studied. How does

localization set in as one crosses the transition from an extended to an MBL phase? How

can one observe coherent quantum phenomena in these ‘hot’ systems, which, despite the

absence of a true temperature, have a very high energy density? Finally, one can ask

whether disorder is an essential ingredient - while to localize noninteracting particles one

must have quenched disorder, can an interacting system evade this requirement?
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