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Introduction:
The ‘superconducting proximity-effect’ is a well-known set of words, which often is accompa-
nied by a qualitative explanation such as the leakage of Cooper pairs over a length called the
normal metal coherence length

√
h̄D/kBT . One step further it is reduced to the statement that

a normal metal takes on the properties of a superconductor and can be characterized by an in-
duced gap ∆ind, from which point on the standard BCS expressions are used with a reduced gap.

In reality the superconducting proximity-effect is a very rich and complicated phenomenon
of which many aspects are yet to be unraveled. The complexity arises because the actual super-
conducting properties are due to phase-coherent electronic states induced by the macroscopic
quantum phase of the neigbouring superconductor, which in many cases are dependent on the
actual geometry of the N-part and when two superconductors are present on the differences
between their phases. In addition, analogous to the uniform BCS superconductor itself, the
properties depend on the occupation of the states, which in equilibrium is the Fermi-Dirac
distribution. In many experimental situations the system is driven and a non-equilibrium dis-
tribution will control the observable properties.

A great deal of the groundwork for the nonequilibrium superconducting proximity-effect was
laid at the end of the 1960’s up to the beginning of the 1980’s, before the abundant availability
of nano-structures. The latter started to become prominent for normal transport in the mid-
1980’s and continue to dominate until the present day. An important conceptual framework for
normal transport in nanostructures is the Landauer-Büttiker formalism for quantum transport.
It makes a distinction between a ’conductor’ characterized by a transmission matrix and ’con-
tacts’, which are considered ’boring’ equilibrium reservoirs. They serve as equilibrium baths for
emitted waves and also serve as reservoirs in which thermal equilibration of transmitted and
absorbed waves occurs. Such a model has served very well for GaAs/AlGaAs heterostructures,
where the conductor and the contacts are made of one and the same material. Similarly with
mechanical break junctions. In the latter case the framework can also be applied to study in
great detail the equilibrium and nonequilibrium superconducting properties of, for example,
single-atom point contacts.

The situation is much more complicated when the conductor and the contacts consist of dis-
similar materials. In many cases some kind of nano-conductor, nanotube, nanowire, molecule,
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2DEG, etc is contacted to one or two superconductors. Experimentally one finds, obviously, the
Josephson-effect. Any kind of coupling of the two macroscopic quantum phases of the two su-
perconductors will produce a supercurrent, which depends periodically on the phase-difference,
will produce Shapiro steps or some form of the Fraunhofer-diffraction pattern (which is geom-
etry dependent). Being a macroscopic quantum-effect these properties are fairly universal and
therefore do hardly reflect specifics of the objects under study.

The interesting and urgent questions for the hybrid structures, in my view, are what are
the phase-coherent microscopic states that carry the supercurrent, for zero voltage and at finite
voltage, and how these are populated in the static and in the dynamic case. Although, one
would wish that the conceptual framework can be as easily digestible as the Landauer-Büttiker
framework the reality is most likely that the noequilibrium proximity-effect theory, known as
the quasiclassical theory for nonequilibrium superconductivity will play a key role. And of
course for the more ballistic case a tractable version of the Bogoliubov-De Gennes equations.
The theory will have to be extended and applied to treat new experimental conditions. For
example, although boundary conditions for a system between a diffusive superconductor and
a diffusive normal metal as well as for two coupled ballistic systems are known, the boundary
conditions for an interface between a ballistic normal metal system and a diffusive supercon-
ductor are not known. In fact, they may require detailed knowledge of the interface, often not
known in experiments.

Dynamic effects in diffusive superconducting constrictions:
An example of properties studied is voltage-carrying state of superconducting constrictions such
as pointcontacts and microbridges. Unfortunately, most of this type work is missing in the of-
ten used review of Likharev[1]. The review does not include the progress that was made in
nonequilibrium superconductivity, in which the energy-dependence of many quantities plays a
role and which was at the time of writing, 1978, still under development, in particular in its
application to superconducting weak links.

In superconducting constrictions the current density in the constriction is the highest. There-
fore the system behaves in many ways analogous to a SNS junction with a short N-channel, in
which the weakening by the transport current is counter-acted by the presence of the nearby
equilibrium superconductors. One of the earliest expressions for the DC supercurrent has been
given by Aslamazov and Larkin[2].

For the voltage-carrying state the elementary first attempt to understand the current-voltage
characteristic was based on the engineering-model introduced by Stewart and McCumber, the
RSJ-model. It assumes a Josephson-element characterized by the two Josephson-equations
Is = Ic sinφ and dφ/dt = 2eV/h̄ in parallel with a normal conductor with a current given
by In = V/R. For a current-driven system one finds the well-known hyperbolic shape of the
current-voltage characteristic for the time-averaged voltage: < V >= 1/R

√
I2 − I2c . This model

makes it easy to understand that the observed I,V curve is a time-average. In addition, one
can use this model also to calculate the response to an external microwave field to generate the
so-called Shapiro-steps.

This engineering-model is very helpful from a pedagogical perspective to understand the
rough features of constriction-type superconducting junctions, as well as many others. How-
ever, there are no real systems which actually show the behavior contained in the RSJ-model.
The only exception is a real tunnel-junction on purpose shorted by a normal metal strip, as of-
ten used in SQUID-devices. For unshorted, genuine Josephson-junctions the RSJ-model ignores
a variety of properties, which originate in the microscopy of the energy-dependent properties
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of the coherent states in the constriction. Therefore they are all different in the details. To
illustrate this point I take the symbols used in the RSJ-model. In contrast to what is assumed
in the RSJ-model, the amplitude of the supercurrent Ic is not voltage-independent, the normal
conduction is also not voltage independent, and the dependence on sinφ is often not correct.
Finally, there is also the so-called cosφ-term which is a quasi-particle pair interference term,
also omitted in the RSJ-model.

Here, in the present Commentary, triggered by the 2 papers of Ferrier, Dassonville, Gueron
and Bouchiat, the focus is only on the voltage dependence of the supercurrent Ic(V ). For su-
perconducting constrictions the value of Ic(V ) at finite voltages can and, in fact in many cases,
is different from the one at V = 0. The latter can easily be determined, but the former at finite
voltages is hidden in the time-averaged value. It is found experimentally that with increasing
voltage the amplitude rises proportionally with the dc voltage until it reaches a voltage at which
the Josephson-frequency, the frequency of the oscillating voltage, equals the inelastic scattering
time of the superconducting material used[5]. At that point the amplitude increase saturates
and stays fixed for increasing current. This phenomenon is called ’dynamic enhancement’ of
the critical current[6].

This behavior is due to the following physical process[3, 4, 7]. For simplicity of the argument
we assume a dc voltage-bias. In the Josephson-effect the distribution of current-carrying states
in the constriction is energy-dependent and the actual dependence is on its turn controlled by
the phase-difference (see for example Baselmans et al[8]). For V = 0 with increasing current
the phase-difference adjusts itself to be compatible with this current. At finite voltage the
Josephson-relation, dφ/dt = 2eV/h̄, leads to a linear increase of the phase difference, which
microscopically means that the current-carrying density of states oscillates in time. To mimic
this pattern Tinkham[6] used the terminology of a relaxation oscillation. For a voltage the su-
percurrent is accelerated and with increasing supercurrent the critical current is reached, where
the superconducting state collapses and the constriction is temporarily quasi-normal. At this
point in time the current is carried fully as a normal current and the superconducting state
can rebuild, starting to carry also a supercurrent. This relaxation oscillation occurs at the
Josephson-frequency.

The crucial understanding is that with increasing voltage, i.e. increasing Josephson fre-
quency, the density of states in the constriction is changing so rapidly that it gets populated
with some delay, making it dissipative, and the average supercurrent is affected in the sense
that it increases in amplitude. The important parameter is the energy-relaxation time τin,
which controls the tendency to equilibrium by electron-phonon processes. For eV << τin the
supercurrent is out of phase by π/2 and therefore appears dissipative. For eV >> τin the
supercurrent is in phase with the static part. This pattern of enhanced supercurrent for finite
voltages is called dynamic enhancement in analogy to the enhancement of superconductivity in
films in a microwavefield as first predicted by Eliashberg.

Dynamic effects in diffusive SNS systems:
In the recent articles by Ferrier, Dassonville, Gueron and Bouchiat, the same theme is be-
ing addressed but now in modern well-defined nanostructured SNS systems. Although the
proximity-effect in NS was introduced in the early 60’s, shortly after Josephson’s prediction,
their quantitative research started much later. The reason was that their impedance, before the
advent of nanostructuring, was much too low for practical applications. Therefore there was
much more interest in tunnel-junctions as well as in constricton-type junctions in contrast to
the very low-impedance SNS junctions.
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Theoretically the one-dimensional ballistic case for SNS junctions was addressed early on
by Kulik, Ishii and Bardeen & Johnson, as due to one-dimensional Andreev bound states. Such
ballistic systems have only recently become experimentally accessible. The diffusive case has
become accessible by the gradual progress in nanofabrication, initially by combining semicon-
ducting 2DEGs with superconducting contacts and later with ordinary metals combined with
superconductors. In principle the theory to address the diffusive case, the quasiclassical theory
for diffusive systems, was already available, but controlled experimental data were needed to
provide mutually stimulating progress.

In a diffusive SNS system the density of states in N is dependent on the phase-difference
and shows a so-called mini-gap, which is related to the Thouless energy. The current carried by
these states is controlled by their occupation numbers. This was very elegantly demonstrated
by Baselmans et al.[9] in which by tuning the occupation numbers they were able to create
a π-junction i.e. altered the fundamental current-phase relation showing that sinφ is not a
fundamental relationship of a SNS Josephson-junction but one that results from an appropriate
integral over the energies, for a given distribution-function.

In the experiments reported by Ferrier, Dassonville, Gueron and Bouchiat they take a well-
defined diffusive SNS system. They use two different conceptual schemes to discuss the results.
On the one hand they speak about a dense Andreev spectrum in N, on the other hand they
apply the quasiclassical nonequilibrium theory (which they call Keldysh-Usadel). The essence
is the same in the sense that they envision an energy and phase-difference dependent density
of states in N. The SNS devices is part of a superconducting loop, which allows the tuning
of the macroscopic phase-difference with a magnetic field (a well-known technique often called
Andreev-interferometry). The SNS device is also coupled to a multi-mode superconducting
resonator. It allows them to measure the resonant response of the resonator for changes in the
impedance of the SNS loop. The conditions of the loop are changed by an applied flux, which
is equivalent to applying a phase-difference across the SNS junction. While modulating the
flux they monitor the change in eigen-frequency as well as the change in quality-factor of the
resonator. Through this they obtain the complex susceptibility, which contains the information
about the in-phase and out-of-phase component, or the dissipative and the kinetic inductance
component of the currents carried by the SNS device.

The measurements are carried out over a frequency range of 190 MHz to 3 GHz and over a
temperature range of 0.4 to 1.5 K. The frequency range is important because it allows them to
cover a regime where τ−1

in is smaller or larger than the frequency. The relaxation time τ−1
in is

assumed to be determined by a thin layer of Pd between the niobium and the normal metal. The
not too low temperature range allows them to maintain a kBT >> Eminigap. The experimen-
tal observations are quite clear in demonstrating the emergence of the dissipative component.
They observe clearly the change from 2π to π periodicity with increasing frequency. The data
appear to be consistent with what is to be expected qualitatively for a SNS junction and the
two articles should further speak for themselves.

They supplement their analysis with calculations based on the Bogoliubov-DeGennes equa-
tions with on-site disorder using an Anderson-model. In addition they compare the results also
with results based on the Keldysh-Usadel equations[11]. They find excellent agreement for the
low frequency regime, but differences in the high frequency regime. Possible differences are
interesting because the Usadel equations are for impurity-averaged Green’s functions, whereas
in some cases one is interested in the ballistic limit and the cross-over from diffusive to ballistic
processes is very important for many of the current experiments.
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The subject addressed in these articles revives also much older work by Lempitsky [10], which
focused on predictions for the current-voltage charcateristic of a SNS junction, in analogy for
those observed for constriction-type devices and addressed in Section 2 of this Commentary. In
addition it touches upon the older debate of what causes the microwave-enhanced supercurrent
in constriction-type microbridges, known as the Dayem-Wyatt effect. After it was established
that the superconducting properties as such can be enhanced by microwaves, the analogous
effect for a constriction-type microbridge was regularly discussed, most recently by Bergeret et
al[12]
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