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Quantum Entanglement sheds new light on an old problem

A Proof of Deconfinement in a 2D Gauge Theory from Quantum Entanglement
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In his seminal paper on the renormalization group (RG), Ken Wilson likens the RG flow

of coupling constants to a ball rolling down a hill. In this analogy, the equilibrium positions

of the ball, the RG fixed points, correspond to phases of matter and phase transitions.

A natural question that arises on pushing this analogy is - can we assign an ‘altitude’ to

fixed points? If perturbations nudge a system away from a fixed point, we could immediately

conclude that the only allowed final states are the ones at a lower ‘altitude’ (see figure). While

in general RG flows are more complex than this picture suggests, a certain class of gapless

one-dimensional quantum systems (or two dimensional statistical mechanics models) do

indeed play out this scenario. For states with conformal symmetry (such as the critical point

of the 2D Ising model) the ‘c-theorem’ assigns a real number c ≥ 0 which can be interpreted

as an altitude. Perturbations can only decrease c - which provides strong constraints on

phase diagrams. Subsequently, analogous theorems have been proposed to apply to quantum

systems in spatial dimensions D=2 (the f theorem) and D=3 (the a-theorem). Again,

conformal symmetry is an important ingredient, but this is naturally realized in several

cases such as in the 2+1D critical point of the quantum Ising model (or equivalently in the

3D Ising model at its finite temperature transition) .

The highlighted paper by Grover makes clever use of the f-theorem to argue that a model

of Dirac fermions interacting via gauge forces (Quantum Electrodynamics in 2+1D or QED3)

must have a deconfined phase. That is, unlike the confining effect of gauge forces that bind

quarks into mesons, hadrons etc., the fermions persist to low energies in this model, forming

a strongly coupled soup of excitations.

The action of the model itself, QED3, is

S =
∫
d2x dt

Nf∑
j=1

ψ̄jγ · (p− q A)ψj + (∂µAν − ∂νAµ)2

It has Nf ‘flavors’ of 4 component fermions (in graphene where Dirac fermions also arise,

Nf = 2 corresponding to the two spin projections). However, unlike graphene, the gauge
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FIG. 1: The fixed points xa and xb can be reached by perturbing xc. Hence we expect fxa , fxb < fxc

for 2+1D conformal theories.

potential A is emergent and constrained to propagate solely in two spatial dimensions leading

to strong interactions between fermions. Previously QED3 has been invoked to describe a

variety of phenomena from the pseudogap state of high Tc to the ground state of frustrated

quantum antiferromagnets on the Kagome lattice. However, the basic question of its stability

has been debated. When the gauge coupling is turned on - i.e. by introducing q > 0, it

is found to grow under RG. The question is, does this growth stops at some finite charge,

leading to a strongly interacting fixed point, or continue to grow till the gaplessness itself is

destroyed? It is known that with increasing number of flavors of fermions Nf , the theory is

more likely to be stable. However what this minimum number is was only being addressed

via complex numerical calculations or large Nf techniques [1]. Grover has found a completely

different approach to argue for stability exploiting, ultimately, basic properties of quantum

entanglement.

This is where the f -theorem enters. Let us take a detour to discuss this. The quantity f

is most physically defined in terms of quantum entanglement. Define a circular region ‘A’

with perimeter L and calculate the entanglement entropy SA associated with this region by
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the usual von Neumann formula:

SA = −TraceA [ρA log ρA] where

ρA = TraceB|Ψ〉〈Ψ|

Then the entanglement entropy (in a 2+1D conformal theory) is expected to take the form:

SA = αL− f + . . .

that is, in addition to the leading term that grows with the circumference, there is a sub-

leading constant which is f . Following a number of explicit calculations of f it was verified

that f plays a role akin to the central charge in 1+1D CFTs. If perturbing a fixed point

with f1 destabilized it leading to another fixed point with f2, then f1 > f2. A proof of the f

theorem was offered in Ref.[2] given below that makes central use of a fundamental property

of quantum information, that we will return to at the end of the article.

Grover makes use of this theorem to argue that for sufficiently large Nf , QED3 is stable.

A crude sketch of the proof goes as follows. One likely instability is chiral symmetry break-

ing, where fermions acquire a mass gap once an expectation value 〈ψ̄iψj〉 6= 0 develops. This

however breaks flavor symmetry and leads to 2N2
f Goldstone modes. Thus while the contri-

bution to f from the individual fermion modes scales linearly f1 ∼ 2Nfγ1, the contribution

of Goldstone modes in the symmetry broken state scales as the square of the number of

flavors: f2 ∼ 2N2
f γ2. If f2 > f1, chiral symmetry breaking will be ruled out as an instability,

which, putting in the numbers yields Nf > N c
f = 3.3. That is, beyond a certain critical

number of flavors, QED3 is stable. The argument above has glossed over various subtleties,

such as the contribution of the photon to f which is formally divergent, and the case where

monopole excitations are present where other instabilities can intervene. These issues are

addressed in the paper, by invoking supersymmetry and a theorem of Vafa and Witten -

but the net upshot is that while Nc is raised, it remains finite. Thus the qualitative result

that QED3 is stable with a sufficiently large number of fermion flavors continues to hold.

This result ties together two very different worlds. A key ingredient in Ref [2] in proving

the f-theorem is that quantum information satisfies the following property termed strong

sub-additivity. For a pair of overlapping regions A and B, the entanglement entropy satisfies:

S(A ∩B) + S(A ∪B) ≤ S(A) + S(B)
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It is remarkable that this fundamental property of quantum entanglement ultimately con-

strains the possible dynamics of a strongly interacting field theory! Many of the results

mentioned here will need further work to set them on a rigorous footing. But already in

this example, quantum entanglement ideas added fresh life to an issue that has stagnated

for decades.

[1] On the stability of U(1) spin liquids in two dimensions M. Hermele et al., Phys. Rev. B 70,

214437 (2004).

[2] On the RG running of the entanglement entropy of a circle, H. Casini, Marina Huerta,

arXiv:1202.5650.


