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Dense colloidal or particulate suspensions are ubiquitous; they can be found in foods (e.g. emulsions), paints,
personal care products such as toothpastes, muds, slurries, cements, and many other materials. Cornstarch and water
is a favorite example [1]. They often display dramatic flow behaviour such as shear thinning, fracture, shear thickening,
development of normal stresses, and spatial structuring. One of the most common features is shear thickening at high
volume fractions. In many non-Brownian and Brownian suspensions this shear thickening can occur as almost a
step function of apparent viscosity as a function of shear rate, and has been termed Discontinuous Shear Thickening
(DST), as opposed to Continuous Shear Thickening.

The simplest example is solvated particles interacting by short range (and approximately hard sphere) repulsive
interaction. At low volume fractions the interactions are predominantly hydrodynamic, and well described by the
Stokes formulation, valid in zero Reynolds number, creeping flow, limit, where Re = ρV R/η is the Reynolds number,
V is the characteristic velocity, R the particle radius, and η the viscosity. In concentrated suspensions the Stokes
interaction is simple, albeit computationally time consuming to calculate. At close contact the Stokes interaction gives
rise to singular hydrodynamic lubrication interactions Fn ' ηvR2/h (normal force) and F‖ ' ηv ln(R/h) (tangential
force), which in principle ensures that particles never touch [2]. This leads to so-called ‘hydroclusters’, in which
particles remain in close proximity due to the enhanced local drag due to lubrication, but the singular force ensures
that particles never touch and has not yet been capable of describing DST [3–5]

Hence one needs to go beyond simple Stokesian dynamics. There has been a flurry of recent work that incorporates
ideas from other related fields, namely tribology (where the interplay between solid and fluid friction is important)
and granular media (non-solvated particulate flows). The key important ingredient that has emerged is velocity
independent solid-like friction between particles that come into contact. This is of course of paramount importance
in granular media, but has often been considered ‘heretical’ in the face of the singular force presented by Stokes
lubrication. However, a large laundry list of reasons suggest that contact, and thus friction, should play a role: (1) at
high enough packings particles will unavoidably make contact just to fill space; (2) the Stokes approximation will break
down at short times (and distances) set by inertial forces (the physics that gives rise to boundary layers); (3) thermal
fluctuations (and associated inertia) similarly blur the singular response; (4) asperities and particle roughness can lead
to local non-laminar flows and separations of streamlines during strong confinement; (5) asperities and/or chemical
surface heterogeneity can lead to wall slip, which will soften the singularity and allow contact; (6) for sufficiently high
interparticle pressures and appropriate wetting properties the lubricating layer can rupture by a thermal fluctuation,
leading to contact; (7) rupture or deformation of stabilizing grafted polymer layers could lead to effective slip and aid
the transition to contact.

This set of four papers brought together ideas from various fields to shed light on the problem, and a paradigm
is emerging: at high shear rates the higher stresses are strong enough to break down the hydrodynamic lubrication
‘barrier’ against contact. This implies two different jamming volume fractions φJ (Fig. 1): a jamming φJ0 due to
separated lubricated hard spheres, and a smaller jamming fraction φJ,f due to the appearance of friction contacts,
which allow for a percolating network at lower volume fraction. Depending on whether or not friction is present, one
expects a divergent viscosity η(φ) ∼ (φJ−φ)α, where α ' 2. DST emerges as a crossover from the lubricated viscosity
branch to the friction-dominated branch, since at a give volume fraction the friction-dominated branch has a higher
stress, being closer to its effective jamming point. The key point in all of these works is that the application of flow,
and thus stress, breaks down the lubricating layer and leads to DST.

Fernandez et al. (2013) showed this by appealing results form tribology, in which a crossover from hydrodynamic
friction to ‘boundary lubrication’, in which solid-like lubrication applies. This is apparent in the ‘Stribeck’ curve of the
friction coefficient between two lubricated plates (Fig. 3) as function of sliding rate, which reveals a crossover between
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FIG. 1. Relative viscosity ⌘r as a function of the volume fraction � in the two limits �̇ ! 0 and �̇ !
1 (left). The �̇ ! 0 viscosity (blue circles) is independent of the friction coefficient µ as the friction
is not activated at low stresses, which leads to a relatively lower viscosity diverging at a higher
volume fraction �0

J (which is the jamming point for frictionless systems). The �̇ ! 1 viscosity
however directly depends on µ, as is seen from the difference between µ = 1 (red squares) and
µ =1 (gray diamonds) plots. In particular, the jamming volume fraction decreases with increasing
µ. We fit our data with power laws ⌘r = C(1 � �/�J)�� (right). The best fitting parameters are
(�0

J, �
0, C0) ⇡ (0.66, 1.6, 1.40), (�µ=1

J , �µ=1, Cµ=1) ⇡ (0.58, 2.3, 0.71), and (�µ=1
J , �µ=1, Cµ=1) ⇡

(0.56, 2.4, 0.63).

B. Shear thickening, continuous and discontinuous

We can switch from one rheology to the other by varying the shear rate. Physically,
the transmitted stress increases as the shear rate increases, which triggers the formation
of frictional contacts between particles. Thus, by increasing the shear rate, the viscosity
interpolates between the frictionless and frictional rheology curves, which means we can
observe shear thickening. All this should be a natural consequence of the existence of two
distinct rheologies at �̇ = 0 and �̇ = 1. What we cannot anticipate a priori is the way
in which the system switches from the low viscosity state to the high viscosity one: do we
observe a Continuous Shear Thickening (CST) or a Discontinuous Shear Thickening (DST)?

The shear rate dependence of the viscosity, shown in FIG. 2 for the CLM, demonstrates
the existence of both CST and DST in our system, depending on the volume fraction. As in
experiments, when � < �c the shear thickening is continuous, getting steeper and steeper as
we approach �c, at which point it becomes discontinuous and keeps this behavior for � > �c

and up to �0
J. Note that there appears to be a real discontinuity in our data for these volume

fractions: the time series of the viscosity show an intermittent behavior switching between
two states, that we detail in the next section. In FIG. 2, the intermittent data are split
(two points appear at the same shear rate) and represent a time average for each of the two
states.

When plotted against stress in FIG. 2, the viscosity curves show another interesting
feature, namely that the onset of shear thickening occurs at a stress that is roughly inde-
pendent of the volume fraction. From a mild shear thickening to a marked DST, this stress
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FIG. 1. Divergent viscosities ηr ≡ ηφ for friction-

less (φ0
J) and frictional (φµ

J) suspensions. DST
is posited to occur when flow generates enough
stress to overcome the lubrication barrier to fric-
tion, and suddently induce the higher viscosity be-
havior. The different papers identify different ways
of interpolating between these rheologies to induce
DST.

particle-contact-dominated flow requires, by definition,
that s < sc and it is equivalent to a dense dry granular
flow (i.e., no suspending fluid lubrication effects). Dense
granular flows follow a quadratic scaling of the normal and
shear stress P and ! with the shear rate _" (Bagnold scaling)
through a volume-fraction-dependent factor [5]; this implies
that the apparent viscosity rises linearly with _" and that the
system shear thickens continuously [see Fig. 1(b)]. This
scaling can be expressed in terms of a dimensionless parame-

ter, the inertial number I ¼ _"Rp

ffiffiffiffiffiffiffiffiffiffiffiffi
#p=P

q
, only depending on

$ and % for rigid particles with density #p [24]. Given the

definition of s, this leads to s / &fI
2= _"#pR

2
p. This Bagnold

(CST) regime is then possible as long as _" is larger than _"c /
&fI

2=sc#pR
2
p, showing the link between _"c and sc when

particle contacts dominate. This transition was partially pro-
posed, with macroscopic arguments, by Bagnold [5,25,26].
Nevertheless, our microscopic analysis also accounts for
volume-fraction effects.

In our model, the existence of two lubrication mecha-
nisms (boundary and hydrodynamic) implies two different
jamming volume fractions $max, above which flow is not
possible. If the system is hydrodynamically lubricated, the
jamming volume fraction $HD

max is the random close pack-
ing one $RCP, regardless of the boundary friction coeffi-
cient %0 [27]. Conversely, when the system is in a
boundary-lubricated Bagnold regime, the jamming volume
fraction $BL

max decreases with %0 [28,29]. Both $HD
max and

$BL
max are independent of _" for non-Brownian particles. It

follows that $RCP ¼ $HD
max " $BL

maxð%0Þ. When $ %
$BL

max % $HD
max, the transition from hydrodynamic to

boundary-dominated flow is possible and the suspension

exhibits CST, as reported above and predicted by Bagnold.
When $BL

max <$ % $HD
max, the transition to a Bagnold

regime is forbidden, and the shear rate cannot exceed _"c:
the system undergoes DST. As a consequence, $BL

max is the
critical volume fraction for DST, and therefore it can be
tuned by changing the particle friction coefficient. Both
numerical simulations and experiments fully and indepen-
dently support our model.
In concentrated systems, most of the dissipation arises

from particles that are in, or close to, contact and not from
Stokesian drag [25,30]. This motivates using contact dy-
namics [31–35] to simulate dense suspensions of hard,
spherical, frictional particles using a simplified Stribeck
curve (no mixed regime) as friction law [see Fig. 1(c) and
Eq. (1)]. Only one dissipative mechanism, either BL or
HD, is taken into account in each contact. This constitutes
the simplest physical description of a lubricated contact.
The boundary lubrication between two rough particles

is described using Amontons-Coulomb friction, i.e., the
coefficient of friction%0 being independent of the load, the
speed and the apparent contact area [23].
In the HD regime, the hydrodynamic interactions

between two neighboring particles are long lived and can
be described by standard, low-Reynolds-number fluid
mechanics with a lubrication hypothesis [36], from which
a friction coefficient can be calculated as a function of
the Sommerfeld number % ¼ 2's lnð5=6'sÞ (see the
Supplemental Material [37] for a full derivation). The
lubrication hypothesis breaks down when the particles
are too far apart (i.e., when s is large), and therefore
we consider only a range of _" where s of almost all the
contacts is smaller than a limit value slim ¼ 10&1.
The friction law used for the simulations is then

%ðsÞ ¼
8
<
:
%0 if s < sc

2's ln
"

5
6's

#
if sc < s < slim:

(1)

In our contact-dynamics simulations, the normal forces
are calculated based on perfect volume exclusion, using
zero normal restitution coefficient, and we simulate stress-
controlled (!) simple shear between moving and fixed
rough walls (obtained by randomly glued particles) at a
constant volume fraction [38,39]. The rectangular simula-
tion box dimensions are ðLx; Ly; LzÞ ¼ ð25R; 10R; 27RÞ,
where Lz is the distance between the two walls and R the
radius of the largest particle in the simulations. We use
periodic boundary conditions in both x and y directions.
The presence of hard confinement mimics experimental
conditions. Simulations with Lees-Edwards boundary con-
ditions that are periodic in the three directions show the
same qualitative behavior (see the Supplemental Material
[37]). The particle radii are uniformly distributed between
0:8R and R to prevent crystallization. When fixing $, %0,
R, #p, and sc, the physics of the system is characterized
by a single dimensionless number: ( ¼ ffiffiffiffiffiffiffiffiffi

!#p
p

R=&f. ( can

be understood as the ratio between the microscopic time
scale of the lubricating fluid &f=! and of the granular

FIG. 1 (color online). (a) Schematic Stribeck curve. Evolution
of the friction coefficient % versus the Sommerfeld number s for
a lubricated contact. (b) Apparent viscosity & versus the shear
rate _" from the numerical simulations. (c) Friction law used in
the numerical simulations (black line) and probability distribu-
tions of s, PðsÞ, for all contacts at several shear stresses as
defined in (b). (d) Frequencies of BL contacts PBL and HD
contacts PHD ¼ 1& PBL, as a function of _" for the stresses
defined in (b). The simulations data in (b)–(d) have $ ¼ 0:58,
%0 ¼ 0:1, and sc ¼ 5' 10&5.
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FIG. 2. Schematic and simulated Stribeck
curves of the friction coefficient µ as a func-
tion of the Sommerfeld number s ≡ ηRV/Fn,
showing the crossover from solid-like to fluid-
like lubrication. (From Fernandez et al.
2013). Fernandez et al. show that the
physics embodied in this result from lubri-
cation science can manifest itself in DST in
dense suspensions.

these regimes. They performed experiments on suspensions, prepared surfaces to measure and control frictional
properties, and backed this up with simulations in which the sliding lubrication law is replaced by load-independent
Amontons-Coulomb friction. Their work suggested that DST occurs for φJ,f < φ < φJ,0, while CST should occur for
φ < φJ,f .

At roughly the same time, Seto et al. (2013) performed simulations in which they also regularized the lubrication
singularity by introducing a small scale cutoff length δ [6], leading to Fn ' ηvR2/(h + δ) and F‖ ' ηv ln(R/(h + δ).
They allowed force-dependent sliding friction, F‖ ≤ µ(Fn − Fslide), where Fslide is a characteristic force; and slightly
softened the hard core repulsion to allow for a shear-rate dependence. The simulations revealed an intriguing network
of particle contacts in the DST-induced thickened state, which is induced at a stress characteristic of that force
necessary to initiate friction, and they find a ‘phase diagram’ for DST as a function of shear rate and particle volume
fraction. This was very recently followed up with a comprehensive manuscript (Mari et al. 2014) which included
more spatial information about the DST/CST crossover, including structure factors and the morphology of the DST-
induced contact network. This paper made a link to the calculations of Wyart and Cates, by extracting the fraction
of frictional contacts a a function of stress, which shows a remarkable scaling for different volume fractions.

Motivated by this growing evidence, Wyart and Cates (2014) devised a phenomenological model for DST. They
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of viscosity with increasing surface friction [35]. In a
colloidal silica suspension exhibiting DST, increased par-
ticle roughness has been shown to lead to a smaller critical
shear rate [36,37]. Even for ideally smooth spheres, such
issues as finite particle deformability may play a role for
the large stresses that arise at small interparticle gaps. Such
small gaps, dropping to subnanometer scale even for non-
colloidal particles, lead us to question the relevant physics
of close particle interactions. The experiments cited above,
as well as physical intuition, suggest that contact between
particles is an essential ingredient of the mechanics of flow
of highly concentrated suspensions.

In this Letter we introduce a numerical model merging
hydrodynamics and features of granular physics. The
model permits contacts between particles by assuming a
cutoff in the singular resistance due to lubrication for a
small interparticle gap in the Stokes regime. These contacts
are treated with a model adopted from granular physics,
involving friction. Our simulations, limited here to
athermal systems (i.e., not considering Brownian motion,
although this may, in principle, be introduced), show
expected effects of volume fraction and exhibit both CST
and DST, with the critical ingredient leading to the latter
being the incorporation of interparticle friction (Fig. 1).

Our model deals with the following interparticle inter-
actions: the hydrodynamic force FH, the contact force FC,
and a repulsive force FR. Since both fluid and particle
inertia are neglected, the dynamics is overdamped and
forces (and torques) are balanced for each particle:

FðiÞ
H þ FðiÞ

C þ FðiÞ
R ¼ 0, i ¼ 1; . . . ; N. The hydrodynamic

interaction FH in the Stokes regime can be written as a
linear function of velocities of particles U relative to
an imposed flow U1 by constructing a resistance
matrix R; i.e., hydrodynamic forces are of the form
FH ¼ %R & ðU % U1Þ (see [12,38] for details). The parti-
cle velocities can therefore be determined by solving the
force balance equations.

For concentrated suspensions, the resistance matrix can
be approximately obtained by neglecting the far-field or
many-body effects and taking the leading terms of the pair
hydrodynamic interactions [38]. In the simulations, we use
the leading terms from the exact solution for two particles
[39,40] in order to handle bidisperse systems, but the
following explanation assumes a monodisperse system
for simplicity. There is a singular factor 1=hði;jÞ in the
resistance to relative motion of particles i and j, where
hði;jÞ is the interparticle gap. We argue that it is appropriate,
in seeking to represent real suspensions, to relax the ideal-
ization to represent factors such as the finite roughness of
particle surfaces. We regularize the lubrication by inserting
a small length ! to prevent divergence at contact hði;jÞ ¼ 0
as in [41] (! ¼ 10%3a is used, where a is the particle
radius). The squeezing mode of the lubrication force is
written as

Fði;jÞ
lub ¼ %"ðhði;jÞÞðUðiÞ % UðjÞÞ & nði;jÞnði;jÞ: (1)

Here, "ðhÞ ¼ 3#$0a
2=2ðhþ !Þ, where $0 is the viscosity

of the suspending fluid. nði;jÞ is the unit vector along the
line of centers from particle i to j. Thus, the hydrodynamic
force acting on a particle is approximately given as the
sum of the regularized lubrication force and the Stokes

drag FðiÞ
Stokes ¼ %6#$0afUðiÞ % U1ðrðiÞÞg. The hydrody-

namic forces scale with shear rate _%, and hence there is
no essential shear-rate dependence.
The contact force FC is activated for hði;jÞ < 0. A simple

spring-and-dashpot contact model [42,43] is employed to
mimic frictional hard spheres; the normal force is propor-

tional to the overlap%hði;jÞ:Fði;jÞ
C;nor ¼ knh

ði;jÞnði;jÞ, where kn
is the spring constant. The friction appears as a tangential
force and a torque, both proportional to the tangential

spring displacement !ði;jÞ: Fði;jÞ
C;tan ¼ kt!

ði;jÞ and Tði;jÞ
C ¼

ktan
ði;jÞ ' !ði;jÞ (see [43] for details), where kt is the

tangential spring constant. The tangential force is subject
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FIG. 1 (color online). (a), (b) Shear rate and stress dependence of the relative viscosity $r, respectively. _! is the dimensionless shear
rate. The open and filled symbols indicate the results of n ¼ 512 and 2048, and the volume fractions are shown in the graphs. The
friction coefficient is & ¼ 1 except for the dashed and dotted blue lines, for which & ¼ 0:1 and 0, respectively. Red symbols show the
results with 1.5 times stiffer particles. (c) DST (red line) and CST (dashed line) are shown in the phase diagram. The former is expected
to reach the jamming point 'J for _! ! 0, which is not seen because of log scale. The contour lines for '< 0:56 are labeled by the
relative viscosity, $rð'; _!Þ. Before jamming (black domain), the shear jammed states (gray domain) exist. Observed flowing and
jammed states at ' ¼ 0:58 are shown by circles and crosses, respectively.
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FIG. 3. (a) Apparent viscosity ηr as a function of shear rate Γ̇, showing DST at volume fraction φ = 0.58. (b) Apparent
viscosity data showing that the stress σ at which thickening occurs is governed by the stress σ0 = Fslide/R2 that controls

sliding friction (here, σ̃σ/σ0). (c) DST-CST state diagram as a function of shear rate Γ̇ and volume fraction φ. (From Seto et
al. 2013).

assume that frictional contacts are active above a jamming volume fraction φm, which is determined by the stress
needed to overcome the lubrication force and initiate the contact network. They used the insights of Boyer et al.
[7], who showed that the shear stress σ and pressure P in a suspension obey the scaling relation σ = µ(Iv)P , where
Iv = ηγ̇/P is the ratio of the viscous rearrangment time to the shear time. With this in hand, they argued that the
effective jamming volume fraction, at a given fixed volume fraction, changes with shear rate as the stress induces
lubrication layers to break down and initiate frictional contacts. By making suitable simple smooth assumptions
for the dependence of φJ on the fraction of frictional contacts, and for the dependence of frictional contacts on
pressure, they obtained non-monotonic S-shaped constitutive relation between stress and shear rate is possible even
for φc < φ < φJ,f (Fig. 4). For example, if ALL frictional contacts immediately broke at a given shear rate, when the
stress was a given critial value, then the the material would jump to the higher viscosity branch (Fig. 1). At a given
stress this would lead to a lower shear rate, but if the shear rate was instead controlled, then the stress would have
to increase discontinuously until the new flow branch was reached. Wyart and Cates propose models to soften this
abrupt relation, which leads to the behaviours shown in Fig. 4.

not generate overlaps—vanishes with δz≡ zc − z, where
zc ¼ 2d in d dimensions. This causes the viscosity (and the
correlation length [30]) to diverge as [31]

P ¼ A0η0γ
:
δz−α; (6)

where A0 is a constant and α≃ 2.7. In frictional packings,
counting soft modes is slightly more involved; nonetheless,
these must be present for a system of hard particles to flow,
and it is found numerically that at the critical state ϕm the
number of soft modes is just zero [32]. Both facts suggest
that the loss of soft modes again causes the viscosity
divergence. We shall thus assume that Eq. (6) is valid for all
packings, so long as δz represents the actual number of soft
modes per particle. Theoretically the dependence
of δz on ϕ is not derived, but follows empirically from
the observed divergences for rough and smooth particles
(with constants Ar;s) as

δzr ¼ Arðϕm − ϕÞβr=α (7)

δzs ¼ Asðϕ0 − ϕÞβs=α. (8)

Any given packing has a definite z; but the number of
soft modes, δz, depends on the fraction, fðpÞ, of frictional
contacts. The problem of counting soft modes is somewhat
subtle for spherical particles, but we expect the rheology of
spherical and aspherical particles to display only minor
differences [33]. For aspherical grains the number of soft
modes simply decreases as the number of constraints
increases. The latter should increase linearly with the
number of frictional contacts, leading to

δz ¼ fðpÞδzr þ ð1 − fðpÞÞδzs. (9)

Equations (6)–(9) are closed. For simplicity we assume
(in qualitative accord with the empirical results) that
Ar ¼ As ¼ A, and α ¼ βr ¼ βs ¼ 2. This gives results
completely equivalent to (3), (4), with λ ¼ A0η0=A2.
(From now on we choose rescaled units where λ ¼ 1.)
As already made clear, details of the crossover function
fðpÞ are unimportant unless its decay to unity at large p is
very slow.
Results and discussion.—We next present numerical

results for a suitably bland choice, fðpÞ ¼ 1 − expð−pÞ.
The resulting flow curves Pðγ: Þ are shown in Fig. 1.
A key finding is the onset of DST at a packing fraction
ϕDST ≈ 0.55, distinctly below ϕm ¼ 0.58. As ϕ approaches
ϕDST from below, the slope of the flow curves become more
and more pronounced for p ∼ 1, implying a growing CST.
In our model, which neglects inertia, at higher γ

:
this crosses

over to a second Newtonian regime of high viscosity. At
ϕDST the slope is vertical, and for ϕDST < ϕ < ϕm, the flow
curve is sigmoidal, signaling hysteretic DST between upper
and lower branches of finite viscosity. The maximal extent

of hysteresis is delineated by two strain rates γ
:þ > γ

:−

where dγ
:
=dP ¼ 0. For ϕ → ϕm, we find γ

:− → 0. At this
point, the upper branch of the sigmoid disappears, signify-
ing complete jamming. For ϕ ≥ ϕm material is flowable
at low stress, but completely jammed for p ≫ 1. One may
still observe a discontinuous (and possibly hysteretic)
thickening at γ

:þ, but the thickened state must flow
inhomogeneously.
Figure 2 shows a phase diagram of the various flow

regimes. Inside the solid (blue) curve, there is hysteresis
and flow can depend on strain-rate history. Several features
of this diagram do not depend on the details of f:
(a) near ϕDST the hysteresis zone narrows to a cusp, with
γ
:þ − γ

:− ∝ ðϕ − ϕDSTÞ3=2, as expected from a saddle node
bifurcation; (b) on the approach to complete jamming,
γ
:− vanishes at least as ðϕm − ϕÞ2, and for f0ð0Þ > 0
as ðϕm − ϕÞ3 (modulo logarithmic corrections); (c) γ

:þ

vanishes only at ϕ0 beyond which homogeneous flow is
impossible even at infinitesimal γ

:
.

In the presence of noise, jumps can occur before the
relevant stability limit is reached: the hysteretic regime in
Fig. 2 represents the maximum possible. (Noise-induced
nucleation might recover a single-valued but discontinuous
curve as dγ

:
=dt → 0, but this limit could in turn prove

experimentally inaccessible [34].) Note also that at DST,
where Iv jumps downward and p up, one expects a jump in
the stress ratio μ ¼ σ=P which depends on the full form of
μðIv; pÞ. (However numerics support that μ weakly

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

φ=0.472
0.508
0.544
0.554
0.561
0.568
0.575
0.578
0.58
0.59

Growing φ

FIG. 1 (color online). Log-log plot of flow curve pðγ: Þ from
(3, 4) with λ ¼ 1, ϕ0 ¼ 0.64 and ϕm ¼ 0.58, for various ϕ. For
small ϕ, the behavior is near Newtonian. As ϕ increases, CST
becomes pronounced; its onset pressure p≃ 1 barely depends on
ϕ (unlike the corresponding strain rate). The dashed line is for
ϕ ¼ ϕDST. For ϕDST < ϕ < ϕm, DST is predicted with hysteresis
between two flowing, unjammed states. For ϕ > ϕm (dotted
lines) homogeneous flow can only occur at small strain rates.
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depends on friction at fixed ϕ [35], so this effect may be
small). The same applies to other stress ratios, such as those
involving normal stress differences.
In the inset of Fig. 2 the same phase diagram is plotted in

the ϕ, p plane. This might be relevant for experiments at
controlled P [13]. In principle these might allow one to
reach states inaccessible by any flow history at fixed ϕ,
such as those on the decreasing ‘middle’ branch of the flow
curve Pðγ: Þ. (For ϕ > ϕm this becomes the upper branch,
but is still decreasing.) However, the same branch is also
present for σðγ: Þ where its observation at fixed σ is normally
precluded by transverse shear banding [36]. Ignoring
particle migration (which is slow [16]) such banding might
be prevented if P is controlled locally (not just as an
average along the velocity gradient direction). It is unclear
to us whether the semipermeable rheometer of [13]
achieves this.

Finally we address the role played by the static friction
coefficient m of contacts. So long as this is a positive
constant, ϕm < ϕ0 and our model remains applicable; both
CST and DST are predicted. Since the jamming density ϕm
moves away from ϕ0 as m is increased [37], our model
predicts shear thickening to be more pronounced with high
friction particles than low ones—as reported experimen-
tally [5]. However an alternative but similar scenario might
now be obtained even without finite repulsions, by choos-
ing a stress-dependent contact friction mðpÞ that increases
with p ¼ P=P$.
Conclusion.—We have provided a phenomenological

model of shear thickening for frictional hard spheres with
finite short-range repulsions. Our analysis explains obser-
vations of hysteresis, and predicts that DST should begin at
an onset packing fraction, ϕDST < ϕm, below the jamming
point. Our result may be tested by careful experiments on
hysteresis (which should reveal DST to smoothly flowing
states) in a system of sufficiently hard particles, at fixed
volume fraction. DST (and indeed CST) should disappear
altogether if flow is measured at fixed particle pressure P
[13]. DST also will not be observable if the onset stress P$

exceeds the threshold τ=R for containment of particles
by rheometer menisci of surface tension τ [1,15]. In this
sense DST depends on boundary conditions as well as bulk
properties [1]; but for ϕ < ϕm, with fixed ϕ and no free
surfaces, it reverts to an intrinsic property of the bulk flow
curve σðγ: Þ. We have neglected gravity, Brownian motion,
particle deformability [38], and inertia, thus showing these
not to be prerequisites for shear thickening, but it would be
interesting to see how much they change the picture. For
instance, it may be that slight Brownian motion has effects
very similar to a short-range repulsion [39]. Also it is
possible that shear thickening by a related but inertial
mechanism [5] would arise in fast enough flows even for
purely hard spheres, whereas additional short-range repul-
sions introduce a second, noninertial mechanism operative
at lower strain rates.
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