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Glasses are all around us – literally – yet our understanding of the glass phase is still far from 
complete [1,2]. Upon cooling, structural glasses are characterized empirically by a viscosity that 
shoots up at a finite temperature for the so-called “fragile” glasses. Close to the transition, the 
relaxation timescales diverge. This is illustrated by the “pitch-drop” experiment of the University 
of Queensland [3]: pitch has been slowly flowing out of a container since 1930, with a drop 
falling every decade or so - the ninth of which dropped last April. Despite its sluggish flow, the 
pitch shatters when hit by a hammer, much like a solid. Close to the glass transition the 
relaxations are not only slow but also non-exponential. In fact, non-exponential relaxations 
characterize a broad class of glassy materials, including spin-glasses (magnetic materials where 
the interactions of spins can be either positive or negative [4]) and electron glasses (where an 
electronic system stays out-of-equilibrium for many days [5]). The connections between all 
these systems are only now beginning to be elucidated. 
  
The statics and dynamics of glasses are often considered in terms of a large number of 
metastable states with energies close to the true ground state, which would then lead to slow 
relaxations and memory effects as the system explores this energy landscape. This has led to the 
development of the theory of random-first-order-transition of structural glasses, in a set of 
pioneering works by Kirkpatrick, Thirumalai and Wolynes [6]. It turns out, however, that even 
simplified models of glasses can show dramatically more complex behavior: an important model 
is the Sherrington-Kirpatrick (SK) model [7], introduced in 1975,  in which spins are coupled via a 
random (positive or negative) interaction, and every spin is connected to all other spins. This 
mean-field limit of spin-glasses was shown to be much richer than originally anticipated: in a 
seminal work by Parisi [8] it was shown that the naïve picture of a glass described above does 
not hold for the SK model, and that so-called replica symmetry breaking leads to a fascinating 
energy landscape known as “ultrametricity”, where basins are ordered hierarchically. 
Remarkably, the ideas and theories discussed above have led to amazing breakthroughs in 
solving hard computational problems [9]. 

 

Figure 1: A rugged energy landscape (credit: Duke U.) The 
study by Charbonneau et al.  shows that even in one of the 
simplest model systems for glasses, the structure of the 
energy landscape is incredibly complex, with basins within 
basins. As one approaches the jamming transition where 
the pressure diverges, the landscape becomes fractal.  
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Charbonneau et al. study a hard sphere system as a model system for glasses. While the interaction 
between particles in a structural glass is often modeled using a smoothly varying potential (such as the 
Leonard-Jones potential, where (ݎ) ן ଵଶିݎ െ   ) , using a hard-spheres model system implies thatିݎ
there is no energy scale associated with the potential. Hence, the potential energy contribution to the 
free energy is constant; Nevertheless, the contribution of the entropy to the free energy, combined with 
the constraints that the spheres cannot overlap, leads to a complex energy landscape in terms of the 
packing fraction and the pressure (see Figure 2). This landscape appears to have similar phenomenology 
to other glasses. In light of the insights obtained from the SK model for the complexity of glasses, the 
strategy of the work is to obtain analytical results for system dimension ݀ ՜ λ, and show that the 
predictions are relevant also for low dimensional systems by comparing them with numerics. Using this 
method the authors come up with a number of elegant results which agree extremely well with their 
numerical simulations. One of their key novel findings is that deep enough into the glass phase (upon 
reaching another phase transition discovered by Gardner [10]), the landscape is organized into a 
hierarchy of basins, with power-law scaling governing various observables. They are able to connect the 
properties of this fractal energy landscape with the physics of the jamming transition: imagine putting a 
large number of spheres in a box (with slightly different diameters, to avoid crystallization), and 
compressing them adiabatically. At a certain point, the spheres jam and the pressure one would have to 
exert will diverge – this is the jamming transition, which has been intensively studied over the last 
decade [11]. An elegant prediction of this work is that as one approaches the jamming transition, the 
size of the smallest basin-within-basin in the aforementioned complex energy landscape scales as ି, 
with ݇ ൎ 1.4.  The authors numerically simulate athermal hard spheres in low dimensions, finding 
excellent agreement between their simulations and this analytical result. It should be noted that 
obtaining analytic results for the physics of jamming is extremely challenging, and the majority of work 
in this field has been numerical. 

 

Figure 2: Phase diagram of hard spheres at high 
dimension d, as a function of the packing fraction ߮ and 
the pressure p. As one goes deep into the glass phase, 
the glass becomes “marginally stable”, and inequalities 
arising from demanding mechanical stability become 
equalities. Finally, the system “jams” at the jamming 
transition, where the pressure diverges.  

 

 



From previous work it is known that as one approaches the jamming transition, the network of forces 
between neighboring particles has fascinating properties – “force chains” develop near jamming [10] 
and recently it was shown that the distribution of forces between neighboring spheres P(f) decays as a 
power law for small forces, i.e., (݂)~݂ఏ [12]. This phenomenon is reminiscent (and mathematically 
related) to similar “soft gaps” known to occur in the distribution of local magnetic fields in the SK model 
and in the distribution of on-site energies in electron glasses. Using their approach, Charbonneau et al. 
are able to capture these recent observations, as well as compute the Fourier transform of the force 
distribution, (ߣ)ܨ, again finding remarkable agreement with numerics in low dimensions. They also 
corroborate a scaling relation between different exponents associated with this force network, which 
has been derived in Ref. [12] from considerations of mechanical stability, thus providing a useful check 
of their results. While our understanding of structural glasses (as well other glasses) is far from 
complete, this work shows that studying simplified models for glasses can provide deep insights into 
their physics, as well as testable and quantitative predictions. In particular, the method should be 
applicable also for the study of soft spheres, and to the physics of aging in glasses. According to the 
authors, it could also be expanded to yield a first-principles understanding of the quantum physics of 
two-level-systems in low temperature glasses [13], which for decades has eluded a fundamental 
understanding. 
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