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Some of the most beautiful discoveries of the last couple of years were made in the field of

topological phases of matter. The simpler, non-interacting phases are included in the periodic table

of topological insulators, and are distinguished by the appearance of the edge states protected by

the bulk gap and the symmetry group of the underlying phase. While there are a lot of open

problems about the non-interacting phases, I think it is fair to say that the most obvious and

pressing concerns about them are resolved. The full classification of all the possible topological

systems with all the possible kinds of symmetries might not yet exist; however, if one asks the

right question, available tools guarantee finding the answer with a reasonable amount of effort. In

particular, it is always easy to construct a topological model with a certain symmetry, and study

all of its properties.

The situation is much less satisfactory, when it comes to the interacting and fractionalized

systems. Historically, the first approach to these was to use trial wave functions, instrumental for

the description of the fractional quantum Hall effect. This approach involves essentially guessing

the correct solution from the start, and it requires therefore a great deal of ingenuity. Further, the

trial wave functions do not always provide a recipe for constructing a Hamiltonian that produces

them as a ground state. Often one can guess the kind of the Hamiltonian that would result in a

desired behavior, and verify whether the guess is correct by using exact diagonalization or more

advanced numerical techniques. An alternative approach is to construct exactly solvable models

where all the terms in the Hamiltonian commute. These models were used to construct the most

complicated topological phases, and in my personal understanding their limitation is that they rely

on a very complicated and fine-tuned Hamiltonian in order to achieve what is needed. This means

that perhaps the easiest way to construct topological phases through the exactly solvable models

approach is to use a full-fledged quantum computer.

The work of Weizmann and Harvard team of researchers, highlighted above, uses the technique

known as the ‘wire construction’, developed for fractional quantum Hall effect [1], and further
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extended to other phases in the last couple of years (see e.g. Ref. [2] for an application of the

wire construction to the classification of topological phases). The main idea is to start with a

simple initial Hamiltonian that cis constructed for a set of of parallel wires, each wire carrying a

single electron mode and having a conventional dispersion relation. Then by using the standard

bosonization technique we can switch to considering collective excitations in each wire. The next

step is to construct the interactions and inter-wire hoppings in the wire array such that several

conditions are fullfilled:

• All the extra hopping and interaction terms must commute with each other. This guarantees

that these terms don’t compete.

• All the degrees of freedom in the bulk must be gapped out by these extra terms.

• Some modes from the outermost wires may stay propagating. These are the topologically

protected edge states.

This idea balances between the two approaches I mentioned above. Just like in the exactly solvable

models the wire approach allows to retain an advantage of being able to start from a Hamiltonian,

and taylor it to produce expected topological properties. This Hamiltonian is much simpler than

that of exactly solvable models due to sacrificing of the requirement that all the terms in the

Hamiltonian must commute: the kinetic energy of the wires does not need to commute with the

inter-wire hopping and interaction terms. The price of the sacrifice is that now we are unable to

figure out anymore the full excitation spectrum of the system, and are only able to predict correctly

the ground state properties, the low energy spectrum, and sometimes the excitation gap.

The main physical phenomenon that the authors analyse is the 2πd-periodic Josephson effect,

the residue of the topological protection when one breaks the topological protection by reducing one

of the linear dimensions of the system to be smaller than localization length, and additionally breaks

translation invariance to remove the remaining accidental ground state degeneracy. In principle,

this phenomenon could probably be predicted by generic topological arguments, entirely avoiding

the need to perform a detailed analysis (the same holds also for many other topological phenomena).

However the main reason why I consider the preprint important is the ability of the authors to carry

out the analytical calculations beginning to end. Starting from the Hamiltonian, the authors are

able to derive its topological properties, calculate the operators that switch the Hamiltonian between

different ground states, and to address the splitting of the ground state degeneracy. There is also

a nice feature that the authors do not advertise at all, namely the diagrammatic representation of
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the wire construction that allows to easily design and explain such topological phases. While it

is merely a graphical representation of the underlying idea, I found it invaluable in developing an

understanding of what exactly is happening.

As a final note, I would like to remark that the field of topological phases is largely theory-driven.

The non-interacting topological systems proved to be a great experimental success, but there does

not seem to exist a straightforward way to create fractional topological systems in a lab. I hope

that the simple and robust methods used in the wire construction will allow to bridge the gap.
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