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The packing fraction ρ of a collection of hard spheres in
three dimension cannot exceed a maximum of about 0.74. In
that limit, the spheres are arranged in a close-packed crys-
talline lattice (such as the HCP lattice). If, however, a loose
collection of hard spheres is compactified, starting from some
random initial condition, then the maximum packing fraction
ρc that can be achieved by compaction is well below 0.74: the
system jams during compaction before it can crystallize. In
fact, ρc is always less than about 0.64, known as the random
close packing limit. That does not mean that there are no ar-
rangements of hard spheres with packing fractions in between
0.64 and 0.74. It is in fact straightforward to construct such
arrangements [1]. What it does mean is that hard sphere as-
semblies with packing fraction between 0.74 and 0.64 are not
accessible by compaction of randomly chosen sphere arrange-
ments.

The study of the jamming transition has made great strides
in recent years [2]. It is now understood that the jamming
of a collection of hard objects corresponds to a critical point.
Just as for other critical systems, a correlation length can be
defined that diverges like a power law when ρ approaches
ρc, much like the correlation length of the Ising model di-
verges when the temperature approaches the critical tempear-
ture. Unlike the critical exponents of the Ising model, nu-
merical simulations indicate that certain critical exponents of
jamming are independent of the spatial dimension (“super-
universality”). The concept of jamming has been extended to
include soft objects [3] - even living cells - and it has been
proposed that jamming could be a paradigm for the finite-
temperature formation of glasses [2].

James Clerk Maxwell first observed that for a system of
hard objects to be fully constrained, the number of constraints
imposed by the excluded volume interaction must exceed the
number of degrees of freedom. That leads to the condition
that at the onset of jammimg the mean number of contacts
Z between a sphere and its neighbors must equal twice the
spatial dimension of the system. Sphere arrangements that
obey this condition are called isostatic. In the theory of com-
putation, problems that require maximizing a quantity (such
as the packing density of a hard sphere system) that depends
on a certain number of degrees of freedom subject to a cer-
tain number of linear inequalities (such as the excluded vol-
ume conditions) are known as a linear programming prob-
lems. Linear programming problems are often encountered
in management and planning problems and have been studied
extensively. It has been noted, for a number of NP-complete
computational problems of this type, that if one varies the ratio
of the number of constraints over the number of variables then
the point separating the under-constrained regime from the

over-constrained regime has the character of a critical point
that has power-law type singular properties [4]. These are
known as “SAT-UNSAT” critical points. The paper of Franz
and Parisi suggests that it is productive to view jamming as a
SAT-UNSAT transition.

Franz and Parisi start from a toy model for jamming in high
dimensions where M points ξµi - the obstacles - are randomly
distributed over the surface of an N -dimensional sphere with
radius

√
N , with i running from 1 to N and µ running from 1

to M . One free particle is added with coordinates xi that has
to satisfy the condition |ξµ−x| > σ, with σ playing the role of
the hard-core radius. As the ratio α =M/N increases, the so-
lution space shrinks to zero, which they identify as jamming
point. Next, they observe that this toy problem is a special
case of the perceptron, a machine-learning algorithm with a
long history of applications in linear programming type prob-
lems. It also has been applied to implement the Hebb learning
rules of neural networks. The perceptron algorithm requires
the determination of a space of vectors xi such that the M
“gap” quantities rµ = N−1/2

∑
i ξ
µ
i xi − κ are all positive.

In machine learning, κ is known as the bias. By squaring the
conditions |ξµ−x| > σ for the toy model, it is easy to see that
the toy model is a perceptron with σ2 = 2N+κ. It is however
productive to treat κ as a free parameter. Franz and Parisi find
- analytically - that for positive κ the system is not jammed
while for negative κ there is a jamming transition with critical
exponents that coincide with those found earlier for jamming
in high dimensions.

The importance of the Franz-Parisi toy model/perceptron
is that it links isostaticity and jamming to replica symmetry
breaking, the breaking up of configuration space into separate
domains. The jamming line they find lies in a region of the
phase diagram with broken replica symmetry. In fact, they
find that the condition of isostaticity is not an essential condi-
tion for the appearance of critical jamming behavior but that
replica symmetry breaking is. The paper of Franz and Parisi
implies that the isostaticity criterium for jamming should be
abandoned in favor of replica symmetry breaking! That might
be welcome news for experimental tests of jamming because
the concept of isostaticity is rather problematic for physical
particles - such as colloids - whose surfaces are not mathe-
matically smooth. It also is not clear how to apply isostatic-
ity to particle systems at finite temperature. The concept of
replica symmetry breaking applies, on the other hand, very
well to finite-temperature systems (such as spin glasses) while
it may be a unifying link between jamming and glass forma-
tion. Replica symmetry breaking also provides us with a nice
visualization for the appearance of the packing structures with
density higher than that of random close packing that are not
accessible for arbitrary initial conditions.
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