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Topological insulators have been an important area of quantum condensed-matter re-

search for quite some time now, inspiring many a tired comparison between donuts and

coffee mugs. Phenomenologically, a topological insulator is a material that is insulating

in the bulk yet conducting on the surface. This insulating state is maintained by a wave

function whose phase has a nontrivial winding number, inspiring the comment that such a

material can exist only by virtue of its quantum mechanical nature [1]. A closer look at

the mathematics, however, reveals that topological mechanisms also exist in the acoustic

spectrum of a variety of classical systems from optics to flowing fluids to spring networks

[2, 3]. Indeed, careful analysis of nonlinearities in the mechanical case has also uncovered

new phenomena that do not arise in their topological quantum analogues, such as the direc-

tional propagation of solitons [4]; though in fairness, quantum systems exhibit a richer class

of topological numbers than classical systems so far (though even this may be changing, see

[5] and recommended papers 2-3).

For acoustic vibrations in spring lattices, the topological characterization arises for “iso-

static” (or marginal) spring networks from the phonon band structure. An isostatic network

is one for which there are precisely as many degrees of freedom as naive constraints. The

phonon band structure is then encoded in a compatibility matrix, Q(k), which maps strains

to stresses for deformations with wave vector k [3]; zero-energy phonons can only exist when

det Q(k) = 0. Since det Q(k) is a complex polynomial, the existence of zeros is determined

by how the phase winds around closed loops spanning the Brillouin zone [3] (in the study

of polynomials, this is known as the argument principle). Ultimately, this provides a topo-
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logical classification of rigid structures. As a consequence, however, a transition from one

topological “phase” to another is characterized by the existence of zero-energy deformations.

The group of Vitelli in Leiden has done more than any other in understanding topological

mechanisms in linkages. Most recently, they have begun exploration of how to use topology

to design frameworks that act as mechanical “metamaterials,” materials whose mesoscale

structure lead to effective mechanical properties that are not found in naturally occurring

materials (paper 1). They do this combining structures with different topological character

to create localized regions of soft buckling and rigidity. And, of course, the topological

character of this system ensures that this behavior is robust to imperfections in the structure

or other types of damage. Whether this will turn out to be a useful way to engineer new

materials remains unclear, but it is certainly an important step toward a Star Trek-ian

dream of dialing up whatever properties you want in a new material. Another avenue to

creating classical, topological states is explored by Yang et al. (paper 2). Their proposal

involves creating a lattice rotation cylinders to drive fluid flow. The background circulation

of the fluid modifies how acoustic waves propagate and, after a change of variables, has the

mathematical form of the “zero field quantum hall” system [6]. A topological “quantum

hall” phase of this sort is realized experimentally by Nash et al. (paper 3) in an “active”

mechanical system constructed by gyroscopes.

Aside from fun with topology, there are lessons and potential useful tools emerging from

the recent flurry of activity. On the theoretical side, it seems that not all rigid mechanical

structures are rigid in the same way. On the practical side, there is the potential of using

topology to design robust mechanical metamaterials. Beyond this, the apparent universality

of the math suggests that there are likely to be many more topological systems in mechanics.

One hopes that the nonlinearities arising in these systems generate a rich class of new

phenomena beyond linear order that can be studied in table-top experiments.
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