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Introductory courses in solid state physics typically begin with a discussion of (Fermi

liquid) metals and band insulators. At zero temperature in d spatial dimensions, the former

have a Fermi surface of dimension d−1 (and co-dimension [1] 1) where the chemical potential

intersects a partially filled band, while the latter have no Fermi surface, with the chemical

potential sitting in the band gap. The discovery of Dirac semimetals (of which graphene is

probably the earliest and certainly the most famous example) has introduced a qualitatively

new possibility. In Dirac semimetals, the conduction and valence bands touch at a discrete

set of points, and when the chemical potential is tuned to that point then there arises a zero

dimensional Fermi surface with co-dimension d, which in spatial dimensions two and three is

clearly intermediate between a metal and a band insulator. This fact, combined with the π

Berry phase associated with Dirac points, is responsible for much of the rich phenomenology

that has captivated condensed matter physicists over the past decade.

Very recently, it has been realized that in three spatial dimensions there can arise Dirac

line semimetals, where the conduction and valence bands touch on a line. To my knowledge,

this notion was first advanced in [2], albeit in a context where having the line contact at

constant energy required considerable fine tuning. The focus of [3] is on a situation where

this line contact is naturally non-dispersive (i.e. at constant energy), such that the Fermi

surface at perfect compensation consists of a line of Dirac nodes with co-dimension two -

a case intermediate between three dimensional Dirac point semimetals and ordinary three

dimensional metals. Such ‘Dirac line semimetals’ provide a qualitatively new playground

for solid state physics, of (one may hope) comparable richness to Dirac point semimetals.

Specifically, Mullen, Uchoa and Glatzhofer show that in a certain class of three dimensional

hyperhoneycomb lattices (Fig.1), a simple tight binding model (without spin orbit inter-

action) gives rise to a closed loop of Dirac points at zero energy. As pointed out in [2],

such a bulk Dirac line node also results in a flat band of surface states. The simplest such
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Introduction.—In honeycomb lattices, the existence of
the Dirac point results from the planar trigonal connectivity
of the sites and its sublattice symmetry [1]. Less well
known are “Dirac loops,” three dimensional (3D) closed
lines of Dirac nodes in momentum space, on which the
energy vanishes linearly with the perpendicular
components of momentum [2]. To date there are no
experimental observations of Dirac loops, and they were
predicted to exist only in topological superconductors [3]
and in 3D semimetals [4] in which the parameters such as
interactions and magnetic field are finely tuned [2].
Theoretically, graphene is not the only possible lattice

realization with planar trigonally connected atoms [5]. It is
therefore natural to ask if there are variations on the
honeycomb geometry that might produce exotic Fermi
surfaces with Dirac-like excitations and topologically non-
trivial states. In this Letter, we propose a family of
trigonally connected 3D lattices that admit simple tight-
binding Hamiltonians having Dirac loops, without requir-
ing any tuning or spin-orbit coupling. Some of these
structures lie in the family of harmonic honeycomb lattices,
which have been studied in the context of the Kitaev model
[7–11], and experimentally realized in honeycomb iridates
[12]. The simplest example is the hyperhoneycomb lattice,
shown in Fig. 1(a).
We derive the low energy Hamiltonian of this family of

systems, and analyze the quantization of the conductivity
and possible surface states. Even though these systems are
3D semimetals, their Fermi surface is multiply connected,
with the shape of a torus, and highly anisotropic. When a
magnetic field with toroidal geometry is applied, we find
that the Hall conductivity is quantized in 3D at sufficiently
large field. Additional spin-orbit coupling effects can create
topologically protected surface states in these crystals. We
claim that in the presence of spin-orbit coupling, these
structures conceptually correspond to a new family of
strong 3D topological insulators [13,14]. We finally discuss

the experimental feasibility of realizing those structures as
new allotropic forms of carbon.
Tight-binding lattice.—Our discussion starts with the

simplest structure, the hyperhoneycomb lattice [see
Fig. 1(a)]. All atoms form three coplanar bonds spaced
by 120°. The tight binding basis is of the form ψα;kðrÞ ¼
ϕαðkÞeik·r, with α ¼ 1; 2; 3; 4 labeling the components of a
four vector Φk, which describes the amplitudes of the
electronic wave function on the four atoms in the unit cell.
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FIG. 1 (color online). Simple lattice structures where all atoms
are connected by three coplanar bonds spaced by 120°. (a) The
hyperhoneycomb lattice (H-0), with a four atom unit cell. Atoms
1, 2, and 3 (xy plane); atoms 2, 3, and 4 (yz plane). Atoms 1 and 2
form a vertical chain (black links); atoms 3 and 4 form a
horizontal chain (blue links). The chains are connected by links
(red) in the z direction. (b) An eight atom unit cell (H-1). Atoms
1–4 create a vertical chain of hexagons along the x direction.
Atoms 5–7 create a horizontal chain when repeated in the y
direction.
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We propose a family of structures that have “Dirac loops”, closed lines of Dirac nodes in momen-
tum space, on which the density of states vanishes linearly with energy. Those lattices all possess
the planar trigonal connectivity present in graphene, but are three dimensional. We show that their
highly anisotropic and multiply-connected Fermi surface leads to quantized Hall conductivities in
three dimensions for magnetic fields with toroidal geometry. In the presence of spin-orbit coupling,
we show that those structures have topological surface states. We discuss the feasibility of realizing
the structures as new allotropes of carbon.

Introduction.� In honeycomb lattices, the existence of
the Dirac point results from the planar trigonal connec-
tivity of the sites and its sub-lattice symmetry [1]. Less
well known are “Dirac loops”, three dimensional (3D)
closed lines of Dirac nodes in momentum space, on which
the energy vanishes linearly with the perpendicular com-
ponents of momentum [2]. To date there are no exper-
imental observations of Dirac loops, and they were pre-
dicted to exist only in topological superconductors [3] and
3D Dirac semimetals [4] in which the parameters such as
interactions and magnetic field are finely tuned [2].

Theoretically, graphene is not the only possible lat-
tice realization with planar trigonally connected atoms
[5]. It is therefore natural to ask if there are variations
on the honeycomb geometry that might produce exotic
Fermi surfaces with Dirac-like excitations and topologi-
cally non-trivial states. In this Letter, we propose a fam-
ily of trigonally connected 3D lattices that admit sim-
ple tight-binding Hamiltonians having Dirac loops, with-
out requiring any tuning or spin-orbit coupling. Some
of these structures lie in the family of harmonic honey-
comb lattices, which have been studied in the context
of the Kitaev model [7–11], and experimentally realized
in honeycomb iridates [12]. The simplest example is the
hyper-honeycomb lattice, shown in Fig. 1a.

We derive the low energy Hamiltonian of this family of
systems, and analyze the quantization of the conductivity
and possible surface states. Even though these systems
are 3D semimetals, their Fermi surface is multiply con-
nected, with the shape of a torus, and highly anisotropic.
When a magnetic field with toroidal geometry is applied,
we find that the Hall conductivity is quantized in 3D at
su�ciently large field. Additional spin-orbit coupling ef-
fects can create topologically protected surface states in
these crystals. We claim that in the presence of spin-orbit
coupling, these structures conceptually correspond to a
new family of strong 3D topological insulators [13, 14].
We finally discuss the experimental feasibility of realizing
those structures as new allotropic forms of carbon.

Tight-binding lattice.� Our discussion starts with the
simplest structure, the hyper-honeycomb lattice (see Fig.

1a). All atoms form three coplanar bonds spaced by
120�. The tight binding basis is of the form  ↵,k(r) =
�↵(k) eik·r, with ↵ = 1, 2, 3, 4 labeling the components of
a four vector �k, which describes the amplitudes of the
electronic wavefunction on the four atoms in the unit cell.
The tight binding Hamiltonian satisfies the eigenvalue

equation H�k = E�k where H↵,� = t
P

~�↵,�
eik·~�↵,� and

t is the hopping energy between nearest neighbors sites
separated by the vector ~�↵,� connecting an atom of the
kind ↵ with its nearest neighbor of the kind �. The sum
is carried over all nearest neighbor vectors ~�↵,� among
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FIG. 1. (Color online) Simple lattice structures where all
atoms are connected by three co-planar bonds spaced by 120�.
a) The hyper-honeycomb lattice (H-0), with a four atom unit
cell. Atoms 1, 2 and 3 (xy plane); atoms 2, 3 and 4 (yz plane).
Atoms 1 and 2 form a vertical chain (black links); atoms 3 and
4 form horizontal chain (blue links). The chains are connected
by links (red) in the z-direction. b) An eight atom unit cell
(H-1). Atoms 1-4 create a vertical chain of hexagons along
the x-direction. Atoms 5-7 create a horizontal chain when
repeated in the y-direction.

ar
X

iv
:1

40
8.

55
22

v3
  [

co
nd

-m
at

.m
es

-h
al

l] 
 9

 Ju
l 2

01
5

(c)

2

any two given species of sites, ↵ and �. In explicit form,

H↵� = t

0
BB@

0 ⇥x 0 e�ikza

⇥⇤
x 0 eikza 0

0 e�ikza 0 ⇥y

eikza 0 ⇥⇤
y 0

1
CCA (1)

where ⇥i = 2eikza/2 cos(
p

3kia/2) with i = x, y and a
the interatomic distance.

This Hamiltonian has a zero energy eigenvalue along
the curve defined by kz = 0 and

4 cos
⇣p

3kxa/2
⌘

cos
⇣p

3kya/2
⌘

= 1. (2)

Eq. (2) defines a zero energy line k0 = (kx(�), ky(�), 0)
shown in the solid white lines in Fig. 2a, where � is the
cylindrical polar angle with respect to the center of the
Brillouin zone (BZ) at the � point. The reciprocal lat-
tice is generated by the vectors b1 = (2⇡/

p
3a, 0,⇡/3a),

b2 = (0, 2⇡/
p

3a,�⇡/3a) and b3 = (0, 0, 2⇡/3a), as
shown in Fig. 2b, and has four high symmetry points,
�, R, X, and Z. The 3D BZ has four-fold rotational sym-
metry around the [001] direction. The energy spectrum of
Hamiltonian (1) has four bands, shown in Fig. 2c, where
the two lowest energy bands are particle hole-symmetric
and cross along the nodal lines, in the kz = 0 plane. The
bands displayed in Fig 2c follow the path shown in the
triangular line of panels a, b, with the point R located in
the middle of the flattened corners of the BZ.

Projected Hamiltonian.� Expanding the � eigenvec-
tors around the nodal line and projecting the Hamilto-
nian (1) in the two component subspace that accounts
for the lowest energy bands, the projected Hamiltonian
can be written in the Dirac-like form

Hp(q) = � [vx(�)qx + vy(�) qy]�x + vz(�)qz �z , (3)

where q ⌘ k(�)�k0(�) is the momentum measured away
from the nodal line, �x, �z are 2 ⇥ 2 Pauli matrices (we
set ~ ! 1) and

± Ek = ±
q

[vx(�)qx + vy(�) qy]2 + [vz(�)qz]2 (4)

is the low energy spectrum. The quasiparticles of Hamil-
tonian (3) are chiral in that there is a Berry phase

i
H
h�k|~rk�ki · d~k = ⇡ [15, 16] associated with paths

in momentum space that encircle the nodal line.
The Fermi velocities vi(�) (i = x, y, z) are plotted in

Fig. 2d, and can be approximated by simple trigono-
metric functions. The quasiparticles disperse linearly in
the normal directions to the nodal line (Fig 2e) and are
dispersionless along the Dirac loop. In the cylindrical
moving basis shown in Fig. 2e, the velocities are given
by vz(�), v⇢(�) and v�(�). Even though the nodal line
is not a perfect circle, the ratio v�(�)/vz(�) is small and
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FIG. 2. (Color online) a) BZ in the kz = 0 plane showing the
Dirac loop lines (solid white). Black line: boundary of the BZ,
centered at the � point. b) 3D Brillouin zone. Black arrows:
directions of the reciprocal lattice vectors bi, i = 1, 2, 3. c)
Energy spectra of the four bands of Eq. (1) in units of t
plotted along the path shown in the red line of panels a) and
b). The low energy bands cross along the Dirac loop. d)
Velocity of the quasiparticles at the Dirac line in units of ta,
as a function of the cylindrical polar angle � with respect to
�. In cylindrical coordinates, red: vz(�); black: v⇢(�); blue:
v�(�). The orange and violet curves describe vx(�) and vy(�)
respectively. e) Red arrows: cylindrical moving basis around
the line of Dirac nodes. Toroidal Fermi surfaces for energies
E/t = 0.1, 0.2, 0.3 and 0.4 around the Dirac loop.

oscillates between 0 and 0.19. Away from half-filling,
the Fermi surfaces are toroids containing the nodal line
k0(�), as shown in Fig. 2e. For small energies, the cross-
section is nearly circular, and the energy varies linearly
with the distance from the loop. A similar analysis can
be done for the unit cell shown in Fig. 1b, which has
8 carbon atoms in the unit cell. In that case, the tight
binding Hamiltonian is an 8⇥8 matrix with 8 di↵erent
bands. This Hamiltonian can be projected into the low
energy states, resulting in a Hamiltonian with the same
form as Eq. (3).

The above structures are merely two in a hierarchy
of possible lattices that can be made with perpendicular
zigzag chains of trigonally connected carbon atoms. We
denote these structures with two integers (nx, ny), where
nx (ny) is the number of vertical (horizontal) complete
honeycomb hexagons contained in the unit cell. In this

FIG. 1. (a) and (b) show the unit cells of the two simplest hyperhoneycomb lattices that realize

Dirac loops in their tight binding dispersion. Subfigure (c) shows the Fermi surface at small but

non-zero doping - the Fermi surface is a torus in momentum space which shrinks to a circle as the

doping is taken to zero. Figures are taken from [3].

lattice supporting a loop of Dirac nodes is a hyperhoneycomb lattice with a four site unit

cell, which the authors argue should be a metastable allotrope of carbon. Such a three

dimensional allotrope of carbon, if realized, may then provide a paradigmatic example of a

Dirac line semimetal. Alternative material realizations have also been discussed elsewhere.

My interest, however, was piqued more by the universal physics that should be associated

with such a loop of Dirac points, regardless of the material realization.

The low energy k · p Hamiltonian for the material discussed in [3] takes the form

H(p) =
∑

p

(vx(φ)δpx + vy(φ)δpy)σx + vz(φ)δpzσz (1)

where σx and σz are Pauli matrices, the δpi denote the momentum offset from the closest

point on the Dirac loop, the vi are the Fermi velocities in the corresponding directions, and

0 ≤ φ < 2π is an azimuthal angle parametrizing position along the loop. Much of the key

physics, however, can be exposed by a cylindrically symmetric ‘toy model’ where the Dirac

loop is a circle of radius pF in the x-y plane. This has a low energy k ·p Hamiltonian of the

form

H(p) =
∑

p

v⊥(p⊥ − pF )σx + vzpzσz (2)

where p⊥ =
√
p2x + p2y. The dispersion takes the form

E±(p) = ±
√

(v⊥(p⊥ − pF ))2 + (vzpz)2 (3)

This toy model contains a great deal of physics. At perfect compensation, the Fermi

surface is a circle with radius pF and codimension two, and there is a π Berry phase along any
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loop that interlocks the Fermi surface. The low energy density of states vanishes linearly with

energy - much as in graphene, but now in three dimensions. This too is intermediate between

a metal (where the low energy density of states is constant) and a perfectly compensated

clean Dirac point semimetal (which in three dimensions has a quadratically vanishing low

energy density of states) Meanwhile, on doping away from perfect compensation the Fermi

surface turns into a torus.

Dirac loops in three dimensions can support new phenomena not conventionally associ-

ated with 3D systems. The authors of [3] highlight this by pointing out one particularly

striking new phenomenon: a three dimensional quantized Hall effect in the presence of an

constant azimuthal magnetic field. Intuitively, if we consider a single point on the Fermi

ring, the Hamiltonian v⊥δp⊥σx+vzpzσz looks just like the Hamiltonian for a two dimensional

Dirac fermion moving in the p⊥ − z plane, and the application of an azimuthal magnetic

field should give rise to a quantized Hall response just as the application of an out of plane

magnetic field gives rise to a quantized Hall response for the two dimensional Dirac fermion.

More formally, a magnetic field B ∝ Bφφ̂ may be represented by a ‘Landau gauge’ vector

potential A = −Bφρẑ, where ρ =
√
x2 + y2. Introducing the vector potential into the

Hamiltonian through the usual minimal coupling prescription, and squaring the Hamilto-

nian, Mullen et al find that the Hamiltonian can be diagonalized by introducing ladder

operators, and the spectrum takes the form

EN = sign(N)(
√

2v⊥vz/lB)
√
|N | (4)

where lB ∝ 1/
√
B is the usual magnetic length i.e. the spectrum breaks up into a (particle-

hole symmetric) tower of Landau levels indexed by integer N , with a ‘square root’ depen-

dence of energy on magnetic field and on Landau level index, just as in graphene. When

the chemical potential lies in the gap between the N th and (N + 1)th level, the system

has σzρ = (2N + 1)pF e
2/h, allowing for a factor of two coming from spin degeneracy i.e.

a radial current induces a voltage bias along the ẑ axis, with a quantized proportionality

constant that depends linearly on the Fermi radius. Colloquially, an azimuthal magnetic

field produces a Hall response in the ẑ − ρ̂ plane that is like the response of pF copies of

graphene to an out of plane field. This behavior should survive even when the Fermi line

is deformed away from a perfect circle, as long as the bulk gaps do not close, and thus

may well be observable in Dirac loop materials. Of course, to produce a radially uniform
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azimuthal magnetic field one would have to apply a time varying electric field ∝ 1/ρ along

the ẑ direction, which experimentally may not be a simple task.

The combination of a Berry phase, a linearly vanishing low energy density of states in

three dimensions, and a non-trivial Fermi surface topology provides a qualitatively new play-

ground for condensed matter physics, and there remain many questions still to explore. For

example, what are the signatures of Dirac loops in transport, aside from the three dimen-

sional quantum Hall effect discussed above? What is the effect of disorder? Of interactions?

Of a combination of the two? What new phases can we access starting from Dirac loop

systems and turning on interactions, disorder, and/or external fields? How does the phe-

nomenology differ for Dirac loops and for Weyl loops (without spin degeneracy)? And where

and how will this new physics be seen experimentally? While some preliminary steps along

these directions have been taken [2, 4, 5], much surely remains to be done. A new chapter

has been opened in the study of Dirac materials. There are exciting times ahead.
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