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Quantum entanglement, which is at the heart of quantum mechanical behavior, has be-
come increasingly relevant to the study of many body systems. It has been extremely useful
as a conceptual framework, and as a diagnostic tool in numerical simulation. For example,
various quantum phases can be defined on the bases of their entanglement signatures, which
allows for their classification. Also, since entanglement is responsible for the exponential
complexity of quantum systems, its understanding has been important to efficiently sim-
ulate them. However, there have been fewer experimental attempts to measure quantum
entanglement, particularly in ways that can be applied to many body quantum systems.
The present reference takes a major step forward in this direction. In brief, using a pair of
identical quantum states of bosons in a tunable optical lattice, the entanglement entropy of
both the Mott and superfluid phases are measured. Although small systems are considered
(4 sites, and subregions of size 2 sites), bigger sizes should be possible. This will bring many
questions regarding entanglement entropy and its time evolution in many body quantum
systems into the experimental realm.

Let us briefly recall some relevant definitions. Assume for a moment that the total system
is in a pure state |¥) (the general case of mixed states requires minor modifications). Then,
if we restrict attention to the subregion ‘A’ we define the density matrix p4 by tracing out

all degrees of freedom outside, which we call region ‘B’. That is :
pa = Tracep|V) (V|

Diagonalizing p4 yields probabilities p; for the subsystem being found in different quantum
states. In the absence of quantum entanglement between regions A and B, p4 also represents
a pure state, so there is a single p; = 1 and all other probabilities vanish. More generally,
in the presence of quantum entanglement we have at least a pair of nonvanishing p;. A

quantitative measure of entanglement hence needs to weigh the departure of p4 from a



pure state. The most popular such measure is the von-Neumann entropy, defined as S4 =

—Tracey [palog pa] or equivalently:

Sa = —(logpa)p,

this expresses the entanglement entropy as an expectation value. This brings us to the
first problem with measuring entanglement entropy. Typically, if one is interested in the
expectation value of an observable O defined in the region A one would calculate (O),, =
Tracea [paO]. When measuring entanglement entropy, the operator to be measured is itself
dependent on the state of the system i.e. O — logpa. Therefore this measurement is
qualitatively different from measuring a physical property like the local density of a system.
A second problem is that when the size of the region ‘A’ is large, one is dealing with a non-
local quantity, that needs to simultaneously utilizesinformation about the state of the system
in an extended region. The second problem was solved using a quantum gas microscope,
that provides a snapshot of the particle occupancy on all lattice sites.

Solving the first problem required several steps. First, one would like to convert the
measurement into a more standard one that evaluates the expectation value of a fixed
operator. For this it is convenient to move away from the von-Neumann entropy and use a
different, but qualitatively similar measure of entropy, the Renyi entropy, S with an index
n > 1, is defined as:S;! = —— log Trace4 [p7%]. Again, for a pure state Sz = 0, while for a
mixed state S > 0, and hence it has the right qualitative properties to qualify as a measure
of entanglement. In fact, in the limit n — 1, it reduces to the von-Neumann entropy. A
simple entanglement measure therefore is the n = 2 Renyi entropy:

et = Traces [pA] = (pa)y,
In order to express this as an expectation value of a fixed operator, one considers a tensor
product of the wavefunction with itself: |¥) — |U) ® |¥). That is, two identical copies of
the wavefunction. Now, the second Renyi Entropy is expressible as the expectation value
of an operator, called the Swap, operator, which exchanges the state of the system in
region A between the two copies, while leaving the ‘B’ degrees of freedom untouched. So:

Swap4|na, ng)|n'y, ns) = |0y, np)na, ny). It is easily shown that:

e = (U|(|Swap,| )| V)



thus we have to measure an expectation value of a fixed operator. The price we pay is that
we need two identical copies of the state, for example by preparing two identical systems in
their ground states.

Measuring the Swap operator is easily done in numerical simulations, where the above
procedure is useful for extracting the entanglement entropy[1]. However to make it suitable
for an experimental measurement, one needs a more physical observable. In fact, since
the quantum gas microscope is designed to measure particle occupation number at a given
lattice site, we want to reduce the measurement of the Swap operator, to one that measures
site occupancies. This is done by constructing the many-body boson analog of the Hong-
Ou-Mandel interferometer that is well known in the context of quantum optics [2].

The key observation is that the Swap operator, which exchanges particles (say bosons) in
the two copies (copy 1 and copy 2), can be expressed very simply in terms of the sum and
difference of boson operators. Boson operators a;; and a;y on site ¢ in the two copies, these
are exchanged by the Swap operator if site 7 is in region ‘A’. Alternately, if we consider the
sum and difference operators: b;; = % and b = %, then the action of the Swap
operator is to change the sign of the b;s operators, when ¢ € A. This is implemented by the
parity operator P; = (—1)”?2 which measures the parity of the boson occupation numbers
of the b;, bosons. The total parity of these bosons in region ‘A’ : Py = [[;cq F; is directly

related to the Swap, operator and thus to the entanglement entropy:

(Pa) = (Swap,) = e~ %

Experimentally, one needs to transform the sum and difference operators, into site opera-
tors whose occupations can be measured. This is done by introducing a controlled tunneling
J, between the two copies for only those sites that reside in region A. Allowing the tunnel-
ing to act for a time ¢t = 27/8.J, along with certain phase operations, leads to the desired
transformation, so that ultimately the occupation numbers in the second copy exactly reflect
the occupation numbers of the by bosons, whose parity is then readily measured.

FExperimental Results: In the featured reference, an optical lattice of size 4x2 was prepared
in a Mott state with one bosonic atom (Rbg;) per site. The tunneling along the length 4
direction is controlled to tune the state between ‘Mott’ and superfluid phases, while the other
direction represents the two identical copies. An additional complication of the experimental

system is that the initial state is a thermal state and hence includes a thermal contribution
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FIG. 1: Experimentally measured entanglement entropy of a 4 site system, with different sizes of
subsystems ‘A’ (x-axis). Panel I: The system is in the Mott phase and the ground state is essentially
a product state with little entanglement between subsystems. This is reflected in the mutual
information I4p (red curve) which remains small, independent of system size. Panel II: In the
superfluid phase, where there is substantial entanglement due to the delocalization of bosons, the
entropy is nonmonotonic in system size characteristic of the quantum entanglement contribution.
Isp (red curve) grows with system size and achieves a maximum when ‘A’ is half of the total

system size, and then decreases. Figure taken from the featured reference.

to the entanglement entropy that scales linearly with system size. This is readily excluded
by studying the mutual information I,g = S4 + S — Sap which is sensitive to quantum
entanglement between the subsystems A and B. The measured mutual information for the
Mott and superfluid states are compared in the Figure (red curves). While the Mott state
has negligible quantum correlations between sites, these are substantial for the superfluid

state, and both agree with numerical simulations.
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