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Quantum entanglement, which is at the heart of quantum mechanical behavior, has be-

come increasingly relevant to the study of many body systems. It has been extremely useful

as a conceptual framework, and as a diagnostic tool in numerical simulation. For example,

various quantum phases can be defined on the bases of their entanglement signatures, which

allows for their classification. Also, since entanglement is responsible for the exponential

complexity of quantum systems, its understanding has been important to efficiently sim-

ulate them. However, there have been fewer experimental attempts to measure quantum

entanglement, particularly in ways that can be applied to many body quantum systems.

The present reference takes a major step forward in this direction. In brief, using a pair of

identical quantum states of bosons in a tunable optical lattice, the entanglement entropy of

both the Mott and superfluid phases are measured. Although small systems are considered

(4 sites, and subregions of size 2 sites), bigger sizes should be possible. This will bring many

questions regarding entanglement entropy and its time evolution in many body quantum

systems into the experimental realm.

Let us briefly recall some relevant definitions. Assume for a moment that the total system

is in a pure state |Ψ〉 (the general case of mixed states requires minor modifications). Then,

if we restrict attention to the subregion ‘A’, we define the density matrix ρA by tracing out

all degrees of freedom outside, which we call region ‘B’. That is :

ρA = TraceB|Ψ〉〈Ψ|

Diagonalizing ρA yields probabilities pi for the subsystem being found in different quantum

states. In the absence of quantum entanglement between regions A and B, ρA also represents

a pure state, so there is a single p1 = 1 and all other probabilities vanish. More generally,

in the presence of quantum entanglement we have at least a pair of nonvanishing pi. A

quantitative measure of entanglement hence needs to weigh the departure of ρA from a
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pure state. The most popular such measure is the von-Neumann entropy, defined as SA =

−TraceA [ρA log ρA] or equivalently:

SA = −〈log ρA〉ρA

this expresses the entanglement entropy as an expectation value. This brings us to the

first problem with measuring entanglement entropy. Typically, if one is interested in the

expectation value of an observable O defined in the region A one would calculate 〈O〉ρA =

TraceA [ρAO]. When measuring entanglement entropy, the operator to be measured is itself

dependent on the state of the system i.e. O → log ρA. Therefore this measurement is

qualitatively different from measuring a physical property like the local density of a system.

A second problem is that when the size of the region ‘A’ is large, one is dealing with a non-

local quantity, that needs to simultaneously utilizesinformation about the state of the system

in an extended region. The second problem was solved using a quantum gas microscope,

that provides a snapshot of the particle occupancy on all lattice sites.

Solving the first problem required several steps. First, one would like to convert the

measurement into a more standard one that evaluates the expectation value of a fixed

operator. For this it is convenient to move away from the von-Neumann entropy and use a

different, but qualitatively similar measure of entropy, the Renyi entropy, SAn with an index

n > 1, is defined as:SAn = − 1
n−1 log TraceA [ρnA]. Again, for a pure state SAn = 0, while for a

mixed state SAn > 0, and hence it has the right qualitative properties to qualify as a measure

of entanglement. In fact, in the limit n → 1, it reduces to the von-Neumann entropy. A

simple entanglement measure therefore is the n = 2 Renyi entropy:

e−S
A
2 = TraceA

[
ρ2A

]
= 〈ρA〉ρA

In order to express this as an expectation value of a fixed operator, one considers a tensor

product of the wavefunction with itself: |Ψ〉 → |Ψ〉 ⊗ |Ψ〉. That is, two identical copies of

the wavefunction. Now, the second Renyi Entropy is expressible as the expectation value

of an operator, called the SwapA operator, which exchanges the state of the system in

region A between the two copies, while leaving the ‘B’ degrees of freedom untouched. So:

SwapA|nA, nB〉|n′A, n′B〉 = |n′A, nB〉|nA, n′B〉. It is easily shown that:

e−S
A
2 = 〈Ψ|〈Ψ|SwapA|Ψ〉|Ψ〉
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thus we have to measure an expectation value of a fixed operator. The price we pay is that

we need two identical copies of the state, for example by preparing two identical systems in

their ground states.

Measuring the Swap operator is easily done in numerical simulations, where the above

procedure is useful for extracting the entanglement entropy[1]. However to make it suitable

for an experimental measurement, one needs a more physical observable. In fact, since

the quantum gas microscope is designed to measure particle occupation number at a given

lattice site, we want to reduce the measurement of the Swap operator, to one that measures

site occupancies. This is done by constructing the many-body boson analog of the Hong-

Ou-Mandel interferometer that is well known in the context of quantum optics [2].

The key observation is that the Swap operator, which exchanges particles (say bosons) in

the two copies (copy 1 and copy 2), can be expressed very simply in terms of the sum and

difference of boson operators. Boson operators ai1 and ai2 on site i in the two copies, these

are exchanged by the Swap operator if site i is in region ‘A’. Alternately, if we consider the

sum and difference operators: bi1 = ai1+ai2√
2

and bi2 = ai1−ai2√
2

, then the action of the Swap

operator is to change the sign of the bi2 operators, when i ∈ A. This is implemented by the

parity operator Pi = (−1)n
b
i2 which measures the parity of the boson occupation numbers

of the bi2 bosons. The total parity of these bosons in region ‘A’ : PA =
∏
i∈A Pi is directly

related to the SwapA operator and thus to the entanglement entropy:

〈PA〉 = 〈SwapA〉 = e−S
A
2

Experimentally, one needs to transform the sum and difference operators, into site opera-

tors whose occupations can be measured. This is done by introducing a controlled tunneling

Jy between the two copies for only those sites that reside in region A. Allowing the tunnel-

ing to act for a time t = 2π/8Jy along with certain phase operations, leads to the desired

transformation, so that ultimately the occupation numbers in the second copy exactly reflect

the occupation numbers of the b2 bosons, whose parity is then readily measured.

Experimental Results: In the featured reference, an optical lattice of size 4x2 was prepared

in a Mott state with one bosonic atom (Rb87) per site. The tunneling along the length 4

direction is controlled to tune the state between ‘Mott’ and superfluid phases, while the other

direction represents the two identical copies. An additional complication of the experimental

system is that the initial state is a thermal state and hence includes a thermal contribution
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Figure 5. Rényi Mutual information in the ground state. Contribution from the extensive classical entropy in our measured Rényi entropy
can be factored out by constructing the mutual information IAB = S2(A) + S2(B) � S2(AB). Mutual information takes into account all
correlations [51] between the subsystems A and B. a. We plot the summed entropy S2(A)+S2(B) (in blue, green and light blue corresponding
to the partitions shown) and the entropy of the full system S2(AB) (in red) separately. Mutual information is the difference between the two, as
shown by the arrow for a partitioning scheme. In the Mott insulator phase (U/Jx � 1) the sites are not correlated, and IAB ⇡ 0. Correlations
start to build up for smaller U/Jx, resulting in a non-zero mutual information. The theory curves are from exact diagonalization, with added
offsets consistent with the extensive entropy in the Mott insulator phase. b. Classical and entanglement entropies follow qualitatively different
scaling laws in a many-body system. Top - In the Mott insulator phase classical entropy dominates and S2(A) and S2(B) follow a volume
law– entropy increases with the size of the subsystem. The mutual information IAB ⇡ 0. Bottom - SA, SB show non-monotonic behavior,
due to the dominance of entanglement over classical entropy, which makes the curves asymmetric. IAB restores the symmetry by removing
the classical uncorrelated noise. c. Top - More correlations are affected (red arrow) with increasing boundary area, leading to a growth of
mutual information between subsystems. The data points are for various partitioning schemes shown in Fig. 4b. Bottom- IAB as a function
of the distance d between the subsystems shows the onset and spread of correlations in space, as the Mott insulator adiabatically melts into a
superfluid.

for various partitioning schemes. Among those schemes with
a single boundary maximum mutual information in the super-
fluid is obtained when the boundary divides the system sym-
metrically (Fig. 5a). Increasing the boundary size increases
the mutual information, as more correlations are interrupted
by the partitioning (Fig. 5c).

Mutual information also elucidates the onset of correlations
between various sites as the few-body system crosses over
from a Mott insulator to a superfluid phase. In the Mott in-
sulator phase (U/Jx � 1) the mutual information between
all sites vanish (Fig. 5c, bottom). As the particles start to
tunnel only the nearest neighbor correlations start to build up
(U/Jx ⇡ 12) and the long range correlations remain negli-
gible. Further into the superfluid phase, the correlations ex-
tend beyond the nearest neighbor and become long range for
smaller U/Jx. These results suggest disparate spatial behav-
ior of the mutual information in the ground state of an uncor-
related (Mott insulator) and a strongly correlated phase (su-
perfluid). For larger systems this can be exploited to identify
quantum phases and the onset of quantum phase transitions.

NON-EQUILIBRIUM ENTANGLEMENT DYNAMICS

Away from the ground state, the non-equilibrium dynam-
ics of a quantum many-body system is often theoretically in-
tractable. This is due to the growth of entanglement beyond
the access of numerical techniques such as the time depen-
dent Density Matrix Renormalization Group (DMRG) theory
[53, 54]. Experimental investigation of entanglement may
shed valuable light onto non-equilibrium quantum dynamics.
Towards this goal, we study a simple system: two particles
oscillating in a double well [43, 55]. This non-equilibrium
dynamics are described by be Bose-Hubbard model. The
quantum state of the system oscillates between unentangled
(particles localized in separate wells) and entangled states in
the Hilbert space spanned by |1, 1i, |2, 0i and |0, 2i. Here,
|m, ni denotes a state with m and n atoms in the two sub-
systems (wells), respectively. Starting from the product state
|1, 1i the system evolves through the maximally entangled
states |2, 0i + |0, 2i ± |1, 1i and the symmetric HOM-like
state |2, 0i + |0, 2i. In the maximally entangled states the
subsystems are completely mixed, with a probability of 1/3
to have zero, one, or two particles. The system then returns
to the initial product state |1, 1i before re-entangling. In our
experiment, we start with a Mott insulating state (U/Jx � 1),
and suddenly quench the interaction parameter to a low value,

Mott  
Insulator

Superfluid

FIG. 1: Experimentally measured entanglement entropy of a 4 site system, with different sizes of

subsystems ‘A’ (x-axis). Panel I: The system is in the Mott phase and the ground state is essentially

a product state with little entanglement between subsystems. This is reflected in the mutual

information IAB (red curve) which remains small, independent of system size. Panel II: In the

superfluid phase, where there is substantial entanglement due to the delocalization of bosons, the

entropy is nonmonotonic in system size characteristic of the quantum entanglement contribution.

IAB (red curve) grows with system size and achieves a maximum when ‘A’ is half of the total

system size, and then decreases. Figure taken from the featured reference.

to the entanglement entropy that scales linearly with system size. This is readily excluded

by studying the mutual information IAB = SA + SB − SAB which is sensitive to quantum

entanglement between the subsystems A and B. The measured mutual information for the

Mott and superfluid states are compared in the Figure (red curves). While the Mott state

has negligible quantum correlations between sites, these are substantial for the superfluid

state, and both agree with numerical simulations.
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