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The last years have seen a significant advance in experimental techniques allowing to study the properties of the
chromosome packing in the living prokaryotic and eukaryotic cells, both from static (FISH and Hi-C experiments)
and dynamic (single particle tracking using fluorescent markers) point of view. These advances have led to plethora
of theoretical works trying to make sense of the structure and dynamics of chromosome matter from the point of view
of polymer physics.

From the perspective of conformational statistics, there have been a lot of renewed interest in the study of the
so-called crumpled or fractal globule state of polymer chains, as well as annealed randomly branched polymer confor-
mations and conformations stabilized with thermoreversible saturating bonds; all of these models are presumed to be
candidates for the description of the chromosome conformations within living cells under some conditions.

Making sense of the chromosome dynamics, in turn, requires understanding how it is influenced by variety of complex
factors, including molecular crowding, role of entanglements in the chromatin (or genophore in the case of prokaryots),
non-Gaussian statistics of the chromatin chain, and active forces present in living cells. One of the important aspects
of the problem is to understand how the polymer dynamics is influenced by the fact that surrounding medium is itself
viscoelastic. Indeed, there is strong experimental evidence that a test particle put, for example, into a cytoplasm of a
living cell exhibits fractal Brownian dynamics with mean-square displacement

〈
x2(t)

〉
proportional to tα with α < 1

rather than α = 1 as in usual Brownian motion.

The most basic formulation of the problem of polymer in viscoelastic media is to study the dynamics of a simplest
Rouse model of polymer chain coupled with correlated noise, i.e., to consider fractional Langevin equation of the form∫ t

0

Kα (t− t′) ∂x(t′, s)

∂t′
dt′ =

∂2x(t, s)

∂s2
+ ξα(t, s) (1)

where x(t, s) is a monomer displacement as a function of time t and coordinate along the polymer chain s, the memory
kernel Kα(t) = A(2−α)(1−α)|t|−α, and ξα is a fractal Brownian noise, i.e. Gaussian noise with correlation functions
of the form

〈ξα(t, s)〉 = 0; 〈ξα(t, s)ξα(t′, s′)〉 = kTKα(t− t′)δ(s− s′), (2)

and this particular form of relation between the noise correlations and the memory kernel is dictated by the fluctuation-
dissipation theorem (note that α = 1 corresponds to the simple white noise and thus to original Rouse model).

In two recent works of A. Spakowitz’s group [1, 2] this problem has been studied in remarkable detail. It turns out
that the analogue of the Rouse time, i.e. the time at which chain diffuses for a distance equal to its spatial dimension,
for viscoelastic case behaves as

τα = N2/ατ0, (3)

where N is the number of monomers in the chain and τ0 is typical microscopic time; and at times much less than
this characteristic time t � τα the monomers move subdiffusively

〈
x2(t)

〉
∼ tβ with β = α/2. In the recent paper

[2] the authors, motivated by developments in the experimental techniques, have studied the velocity autocorrellation
functions and time-dependent two-point correlations functions of the chain. On the qualitative level, the main results
are that autocorrelation function is negative for the non-overlapping time intervals, and decays as a power law with
increasing time difference; and that two-point correlation function

〈x(t, s)x(t+ τ, s+ σ)〉
〈x(t, s)〉 〈x(t+ τ, s+ σ)〉

(4)

is, for a long chain, a function of a single scaling variable z = τσ−2/α and grows from 0 for small z to 1 for large z.
Moreover, the authors are able ot obtain many of the interesting correlation functions in close analytical form or in
the form of infinite series.

Note, however, that the problem of chromosome dynamics is, of course, far from being sold completely yet: there
are several important unsolved questions which still linger. Let us mention a few of them:
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• It is not at all clear what is the physical reason which results in the appearance of a fractal Brownian noise of
the form (2), most importantly - whether it is caused by the features external to chromatin itself (e.g., molecular
crowding in the nucleus/nucleoid) or is the reason somehow connected with the presence of the chromatin chain
itself;

• We know for sure from the FISH and Hi-C experiments that chromatin conformations are not Gaussian; it is
not clear therefore whether Rouse model itself is applicable (it is definitely not applicable for non-Gaussian
equilibrium conformations, but the chromatin is definitely far from equilibrium, where the situation is much less
clear);

• Active forces obviously play an important role in chromatin dynamics, so one can expect that to describe the
chromatin dynamics properly one should add some (probably, random) active force into (1) on top of the thermal
force obeying fluctuation-dissipation theorem; it is known that addition of such an active force even in the most
simple form can result in variety of new and counterintuitive phenomena.

• . . .

However, this set of new analytical results is, without any doubt, an important addition to our knowledge about
the polymer dynamics and will work as a natural reference points for the further advances in the field of chromosome
dynamics in partiular, and, more generally, in the study of polymer dynamics in crowded, viscoelastic and active
media.
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