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Spontaneous symmetry breaking is a fundamental paradigm in physics,
from the Higgs field of the standard model to its many manifestations in
condensed matter and materials physics. It occurs whenever a symmetry of
the equations of motion, or the Hamiltonian for Hamiltonian dynamics, is not
fully preserved by physical quantities. The broken symmetry can be internal
or global, such as spin-rotation symmetry which is broken across the Curie
point of a ferromagnet, or a spacial symmetry such as translations which are
broken from their continuous form in a fluid or gas to a discrete subgroup in
the transition to a crystalline solid.

A seemingly more exotic idea is time-translation symmetry breaking (TTSB).
By virtue of the analogy with spatial symmetry breaking, such a situation
was deemed a “time crystal” by Wilczek[1]. In this language it appears very
exotic, but it can be recast in more familiar form. Any oscillator is in a sense
an example of TTSB: a translation by less than the period of the oscillator
alters the configuration of the oscillator. Oscillation obviously occurs easily
in finite classical and quantum systems – c.f. the simple harmonic oscillator.
The trickiness comes if you want the oscillation to be a robust, universal
feature of a system.

To wit, most of our understanding of universality rests on equilibrium sta-
tistical mechanics. Unlike the more conventional forms of symmetry break-
ing, persistent oscillations are not present in equilibrium, almost by defini-
tion: in equilibrium all observables settle down to average values determined
by the rules of statistical mechanics. A recent cogent discussion is in Ref.[2].
Hence, a system with TTSB must be out of equilibrium. This in ensured
by driving with external forces, influx of energy, etc. Then spontaneous os-
cillations can certainly arise by various mechanisms. For example in the
AC Josephson e↵ect, driving a Josephson junction above its critical current
leads to oscillations of voltage. There are well-known oscillating chemical
reactions.
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Such mechanisms explain spontaneous oscillations at short times, but not
their coherence. Naively small perturbations or noise can induce phase shifts
that build up over long times, spoiling the perfect phase coherence. The for-
mal question, analogous to that in ordinary spontaneous symmetry breaking,
is whether the oscillations remain synchronized over long time and space sep-
arations, i.e. is there “long range order”? Again, in classical systems there
is a long history of asking this question, from influential work by Winfree
on biological rhythms[3] to studies of narrow band noise in charge density
waves[4].

In the highlighted paper, Else et al address the existence of TTSB in
quantum systems, with driving perturbations periodic in time. Since the
underlying symmetry of the dynamics in this case is already discrete, TTSB
must also be discrete – it manifests if physical quantities oscillate with a
period larger than that of the drive. Any finite system of this type has
eigenstates of Floquet type: states where | (t + T )i = ei�| (t)i, where T is
the period of the drive. This is the analog of a stationary state in Hamiltonian
mechanics, and obviously in such a state expectation values are invariant
under translations by T . So there is no TTSB in a Floquet eigenstate.

However, it is not obvious that the dynamics of a generic state behaves
the same way, and in fact Else et al construct an example where they do
not. Specifically, they present a simple model of spins in which the unitary
evolution over a period T consists of two parts, U(T ) = U2U1. They take
U1 =

Q
i

�x

i

, which flips every spin in the z basis, and U2 = exp[iH({�z

i

})],
where H is a local Hamiltonian-like function, so that evolution by U2 assigns
a state-dependent phase to each product state in the z basis. It is straightfor-
ward to show that consequently all the Floquet eigenstates are Schrödinger
cat states, i.e. they are a superposition of two macroscopically distinct com-
ponents with all flipped spins in one component relative to the other. Because
such a cat state is exponentially di�cult to construct from a product state,
they argue that a generic initial state never relaxes to a Floquet-like state,
and instead undergoes what is basically a persistent Bloch oscillation living
for a time that grows exponentially with system size. The situation has close
analogies to the usual symmetry breaking in an Ising ferromagnet, in which
the true finite system ground states are cat states, but are never reached in
physically relevant times.

This establishes a very simple example of TTSB in a peridiocally driven
quantum system, and a nice connection of TTSB to non-local entanglement.
The authors further focus on the case in which the phase factor derives from a
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strongly disordered Hamiltonian, in which the undriven Hamiltonian would
exhibit many body localization[5]. In that context, they argue that many
body localization lends stability to TTSB. Like most results for many body
localization, the stability argument is not rigorous, but it is reasonable, and
indeed they present numerical results consistent with this claim. Moreover,
the new work shows that prior theoretical studies giving instances of MBL
phases which symmetry protected topological order or discrete symmetry
breaking also exhibit TTSB (see the highlighted articles Refs.[24-30]).

One may wonder whether this strong disorder regime is the only situation
where TTSB is stable, or whether there may be other examples. Are there
examples of TTSB beyond the simplest discrete multiplication of the drive
period? Assuming TTSB indeed exists, then there should be dynamical
phase transitions into or out of the oscillating situation, which would also be
interesting to study. On a complementary front, the simplicity of discrete
TTSB seems a practical target for experiments with ultra-cold atoms or
other driven quantum systems. Despite the current obsession of theory with
topology, it seems that the old fashioned notion of symmetry breaking still
has some surprises left for the community.
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