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Anyone who has ever looked carefully at  plants will have been struck by the intriguing 
regularity of the patterns that one can often observe in the placement of the seeds or the 
leaves. A  well-known example of a regular spiral pattern is the placements of the seeds 
in  the head of a sunflower. You may also be intrigued by the placement of stickers on a 
cactus or the fractal-like appearance of  your cauliflower and broccoli. The study of 
geometric and numerical patterns in plants is known as "phyllotaxis"; it is a huge field 
with a long history [1]. If one analyzes some of the patterns, one can find all kinds of 
interesting regularities in them, e.g. the placement of leaves on the stem of a plant is 
found to be governed by the Fibonacci numbers.  
 
If so many of these patterns have an underlying mathematical structure, where does this 
structure come from? Can we understand them starting from our understanding of the 
growth dynamics of the plants? Surprisingly little is known about this, but Shipman and 
Newell take, in my view, an important step in the right direction by their analysis of an 
elastic model for the growth region of a plant shoot.  
 
A few years ago, Douady and Couder invented a mechanical analog of flower patterns 
[2]. These authors released little magnetic dipoles  in the center of a flat surface one by 
one. The magnetic repulsion drives each of the dipoles outward from the center, along the 
minima of some complicated energy landscape determined by the interaction of all the 
particles. The reason that this work got so much attention [1] is that snapshots of the 
particle positions reproduced some of the geometric patterns found in phyllotaxis. 
However, this is just a mechanical analog which shows how patterns with intriguing 
geometric features can result from simple rules and interactions; it does  not give any 
insight into the physical mechanism underlying the patterns in a growing plant. 
 
Shipman and Newell do start from a true physical picture of the growth process of the tip 
of a plant shoot. Since  the outer skin of the tip  is normally one or two cells thick, they 
model the  skin of the shoot as a thin shell which experiences compressive stresses due to 
a combination of  growth stresses and the hardening processes. The interior region of the 
shoot is modeled as a simple elastic medium coupled to the compressed shell. The 
dynamical model of Shipman and Newell then essentially becomes a relaxational model 
in which the driving force is the total elastic energy. The relaxational dynamics thus 
drives the shell surface to the minima of this free energy.  In order to analyze these and 
the type of patterns this model gives rise to, the authors expand the elastic energy in 
terms of the amplitudes A of modes with different wavenumbers.  A key observation of 
the paper is that for such a model of an elastic  shell coupled on one side to an elastic 
medium, the asymmetry of the model results in the presence of cubic symmetry-breaking 
terms in the amplitude expansion of the free energy. In the presence of such cubic terms, 



transitions are always subcritical (first-order-like) [3]. Moreover, as is well known, these 
cubic  couplings describe the interaction of three modes, and the authors show that 
Fibonacci-like sequences, and whorl, spiral and hexagonal configurations can be 
recovered  ("postdict", the authors write quite frankly) from the minimization of the free 
energy and understood in terms of the mode selection rules imposed by the cubic terms. 
This scenario is self-consistent if the cubic terms are dominant. From this perspective, the 
fact that Fibonacci-type sequences are usually not observed for less curved or flattish-
topped plants, also comes out naturally from the model.  So, even though the paper is not 
easy reading for the uninitiated, there are lots of amusing results coming out from such a 
simple idea. 
 
[1] For a popular introduction, see e.g the chapter "Flowers for Fibonacci" in the book 
Life's other Secret by I. Stewart (Wiley, New York, 1998). 
 
[2] S. Douady and Y. Couder, Phyllotaxis as a Physical Self-Organized Growth Process, 
Phys. Rev. Lett. 68, 2098 (1992). 
 
[3] Some readers may be familiar with fluctuation-induced first order transitions in the 
transitions in diblock-copolymers (the "Brazovsky mechanism")  or in superconductors 
(the "Halperin-Lubensky-Ma effect"), where in both cases  cubic terms in the free energy 
are generated by integrating out fluctuations. 
 


