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The density matrix renormalization group (DMRG), has proven to be extremely effective 
in simulating 1D quantum systems, and 2D strips of modest width. Generalizations and 
improvements to DMRG have also been developed. Reasonably efficient methods for 
extracting spectral functions have been devised, and other generalizations utilizing 
transfer matrices allow finite temperature studies in translationally invariant quantum 
chains and 2D classical spin systems. It was found that the DMRG wavefunction can be 
written in a matrix product form very similar to (i.e. generalizing) the Affleck-Kennedy-
Lieb-Tasaki (AKLT) state of spin-1 antiferromagnetic chains.  DMRG has also proven 
useful in quantum chemistry. 
 
A method for true 2D quantum simulations has been the holy grail for DMRG, but until 
recently, there were no credible ideas of how one might do it. 
 
Meanwhile, the field of quantum information has been developing. Part of the work in 
this field is tied in with trying to build a quantum computer, or program one, but another 
part seeks to understand basic ideas of entanglement in interacting quantum systems and 
how one might exploit entanglement to do useful things.  A collection of techniques and 
ways of understanding quantum systems have been devised. However, the usefulness of 
this work had not been clear, with quantum computers still just a possibility for the 
future. 
 
In the last two years researchers on quantum information have realized that many of their 
techniques and tricks can apply to the simulations of quantum lattice  
systems. These techniques turn out to be closely related to DMRG. The first advance was 
Vidal's development of an algorithm allowing the efficient solution  
of the (real) time-dependent Schrodinger equation in a 1D quantum system. Here the trick 
was to use the Trotter decomposition and to adapt the basis as the system evolves. Vidal's 
algorithm is very important but is based on matrix product states; it fits naturally into a 
DMRG framework, and might easily have been discovered without input from the 
quantum information community. New algorithms developed since then have been much 
more surprising. 
 
The most surprising approach I've heard has been in a talk by Verstraete, but the paper 
unfortunately hasn't been finished yet. This is a new way to simulate 
disordered 1D systems.  A single realization of a disordered quantum chain can be 



efficiently simulated with traditional DMRG.  Verstraete and Cirac developed an 
approach to simulate all realizations of a disordered chain in one simulation! A set of 
auxilliary sites (ancilla) are introduced, one for each real site, and these ancilla are 
entangled with the real sites. Hamiltonian terms are introduced which encode the various 
disorder realizations into interactions with the ancilla. Starting with the nondisordered 
ground state, the interactions are slowly turned on in an adiabatic time evolution, 
producing a single quantum state which, when the ancilla are traced out, gives the 
average of all ground states over the realizations of disorder. 
 
Another dramatic development by Verstraete and Cirac is the generalization of  the 
matrix product state to a tensor product state to describe systems in 2D or 3D. The key 
idea is to make a tensor for each site which has an index associated with each near-
neighbor link, and one index labeling the states of the site. When all the tensors are traced 
out over all the links, the remaining state indices give the wavefunction. This can give a 
remarkably compact representation for a 2D wavefunction.  The algorithm to optimize 
this tensor product and calculate its energy and properties is clever and complicated. In 
its still early stage of development it has already allowed simulations of 20x20 
Heisenberg systems--small by quantum Monte Carlo standards but much bigger than can 
be accomplished by a standard "strip" DMRG algorithm. While this system can be 
studied by QMC, frustrated and fermion systems give the minus sign problem, which 
does not plague DMRG.  Perhaps the holy grail, reliable, accurate, and unbiased 
simulations of large 2D fermion clusters, is becoming within reach! 


