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Fractionalized phases are fascinating. As the name suggests, the excitations in such systems carry frac-

tions of “normal” particles’ charge and have other unusual properties, such as fractional exchange statistics.

Such phases have been discovered at some fractional fillings of Landau levels of two-dimensional electron

gases (2DEG) in magnetic fields. The Hall conductance σxy develops plateaux (FQH) as a function of the

applied magnetic field for a fixed charge density, where it is quantized to extreme precision in fractional

multiples of the conductance quantum e2/h. These multiples are the filling fractions ν ≡ Ne/Nφ where Ne

is the number of electrons and Nφ is the number of flux quanta Φ0 = hc/e through the area occupied by the

2DEG at magnetic field corresponding to the center of a plateau. At the plateaux, the conductance tensor is

off-diagonal, meaning a dissipationless transverse current flows in response to an applied electric field. In

particular, the circular electric fields generated by threading an additional localized flux quantum through

the system create a radial “outward” current which expels a net charge of νe, thereby creating a quasihole.

Consequently, charge and flux are intimately coupled in the quantum Hall effect.

While almost all observed FQH plateaux occur at the filling fractions ν = p/q with odd denominators

q, one notable exception is ν = 5/2 first reported in (Willett et al., 1987). Let us ignore two completely

filled lowest Landau levels (which are presumed to be inert) and concentrate on the half-filled level. The

above argument for expelled charge would then suggest that the charge of a quasihole is e/2. However, the

ν = 5/2 state is not a typical FQH state. Notice that a simple Laughlin state for 1/m filling

ΨL =
∏
j<k

(zj − zk)m
∏
j

e−|zj |2/4 (1)

(where z = (x + iy)/l0) requires m to be odd since the manybody wavefunction for fermions has to be

antisymmetric. The hierarchical descendents (i.e., Laughlin states of excitations in the parent states) also
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require filling fractions with odd denominators and hence cannot possibly include a ν = 1/2 state. Moore

and Read proposed a so-called Pfaffian trial wavefunction (Moore and Read, 1991):

ΨMR = A
(

1
z1 − z2

1
z3 − z4

. . .

) ∏
j<k

(zj − zk)2
∏
j

e−|zj |2/4 (2)

with A(. . .) denoting the antisymmetrized sum over all possible pairings of electron coordinates. This

wavefunction has an interesting feature: within each pair (e.g. 1 & 2, 3 & 4 etc. in the term spelt out above),

the electrons do not avoid their partners as much as they avoid other electrons. In fact, this wavefunction

describes a weakly paired, spin-polarized superconducting state of electrons (or, more precisely, composite

fermions consisting of an electron and two quanta of statistical flux).

Another possible trial state for ν = 1/2 is the (3,3,1) state (Halperin, 1983):

Ψ331 =
∏
j<k

(zj − zk)3
∏
j<k

(wj − wk)3
∏
j<k

(zj − wk)
∏
j

e−(|zj |2+|wj |2)/4 (3)

which can also be interpreted as an Sz = 0 paired state of spin-up electrons at zj’s with spin-down electrons

at wk’s. There are several other possibilities, but they all describe paired superconducting states. These

scenarios would have a striking physical consequence: a superconducting flux quantum is hc/2e – a half of

the fundamental flux quantum Φ0 – and therefore the charge it expels is half of what we argued. The charge

of a quasihole should therefore be e/4 instead of e/2, providing an unmistakable signature of a paired state!

One of the oldest proposals for measuring the quasiparticle charge in the FQHE regime relies on the

shot noise measurements in a quantum point contact (QPC). The idea is simple: imagine that the tunneling

events are independent and hence their probability obeys a Poisson distribution Pn = e−ααn/n!. It is easy

to check that the first and second cummulants are related: 〈I〉∆t = e∗α while 〈(I − 〈I〉)2〉∆t2 = e∗2α

and therefore e∗ = SI(ω = 0)/2I . (SI(ω) is the power spectrum of noise – the Fourier transform of the

current autocorrelation function.) Independence of the tunnelling events is a good approximation in the

weak tunnelling regime, and this method has been successfully used in the past to measure the fractional

charge of quaisiparticles in the ν = 1/3 and ν = 2/5 FQH regimes (De Picciotto et al., 1997; Reznikov

et al., 1999). The first of the recommended papers (by M. Dolev et al.) reports the results of the shot noise

measurements in the ν = 5/2 state that are consistent with the e/4 charge of a quasiparticle and clearly

exclude the possibility of e∗ = e/2. The same measurements were performed at ν = 5/3, 2, 8/3, 3 yielding

the expected values of e∗ = e/3, e, e/3, e, thus increasing the confidence in the ν = 5/2 results.

While the measurement of the quasiparticle charge confirms the paired nature of the state, it does not al-

low to discriminate between possible pairing scenarios, most notably the non-Abelian Moore–Read Pfaffian

state as well as its particle-hole conjugate, the anti-Pfaffian (Levin et al., 2007; Lee et al., 2007), but also the

Abelian states such as the (3,3,1) Halperin state or a strongly-paired modification of the Moore–Read state.
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Therefore more information is needed to zero down on the best candidate or even to determine the nature

of its quasiparticle statistics.

The second recommended paper (by I. Radu et al.) attempts to fill this gap by studying the tunnelling

conductance across a QPC. A prediction of the edge theory is that in the weak tunnelling regime, the dif-

ferential tunnelling conductance Gt ∝ T 2(g−1)F (g, e∗ItRxy/kT ) (Wen, 1992). (g is the scaling dimension

of the quasiparticle propagator and can be evaluated for all candidate theories. Unlike the charge, it is gen-

erally different for different paired states.) This enabled Radu and coworkers to extract the values of the

quasiparticle charge e∗ and the scaling dimension g by studying both the temperature and current depen-

dence of Gt. The best fit gave the values of g = 0.35 and e∗ = 0.17e. However, since the expected value of

e∗ is e/4, the two-parameter fit appears to give a slight edge to the non-Abelian anti-Pfaffian state (g = 0.5)

over the Abelian (3,3,1) state (g = 3/8), but definitely not ruling the latter out. Curiously, the Moore–Read

state (with g = 1/4) finishes third with a noticeable confidence gap.

More experimental data is needed to determine conclusively the exact nature of the ν = 5/2 FQH state.

However, these two papers give us the first evidence of pairing which has been long suspected. Especially

exciting is the prospect of non-Abelian quasiparticle statistics, which appears consistent with the observa-

tions of Radu et al. More indisputable evidence will likely come from the interferometric experiments, and

the devices used for measuring charge can be considered as a first step towards more complicated designs

required for such experiments. Should the excitations in the ν = 5/2 state indeed turn out to be non-

Abelian, one might also consider the developments reported here as an important step toward manipulating

these excitations. In particular, the degree of control of tunnelling through the QPC demonstrated in the

paper by Radu and coworkers looks very promissing.

References

R. Willett, J.P. Eisenstein, H.L. Stormer, D.C. Tsui, A.C. Gossard, and J. H. English, Phys. Rev. Lett. 59, 1776 (1987).

G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).

B. I. Halperin, Helv. Phys. Acta 56, 75 (1983).

R. De Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, and D. Mahalu, Nature 389, 162 (1997).

M. Reznikov, R. De Picciotto, T. G. Griffiths, M. Heiblum, and V. Umansky, Nature 399, 238 (1999).

M. Levin, B. I. Halperin, and B. Rosenow, Phys. Rev. Lett. 99, 236806 (pages 4) (2007), eprint arXiv:0707.0483.

S.-S. Lee, S. Ryu, C. Nayak, and M. P. A. Fisher, Phys. Rev. Lett. p. 236807 (2007), eprint arXiv:0707.0478.

X. G. Wen, Intl. J. Mod. Phys. B 6, 1711 (1992).


