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Largely inspired by the unusual phenomenology observed in high temperature supercon-

ductors, the search for models which exhibit violation of Landau’s Fermi liquid description

has been a focus of research on strong correlation physics in the past two decades. Incon-

veniently, the superconducting state intervenes, making it difficult to access the purported

exotic ground states and the applicability of these ideas to Hi Tc remains under debate. On

the other hand, an outgrowth of this research is the revival of the notion of RVB and quan-

tum spin liquid and the associated emergent particles such as spinons and gauge fields. The

recent discovery of several candidate spin liquid materials which appear to be gapless has

stimulated interest in the models involving fermionic spinons coupled to U(1) gauge fields.[1]
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(Bosonic spinons are typically gapped.) A typical action of interest is S = Sf +Sint+Sa+Sd.

Sf =
∑

k,α

f †
k,α(−iω + εk − µ)fk,α (1)

Sint =
∑

q,ω

a(q, ω)j(q, ω) (2)

Sa =
∑

q,ω

q2

e2
|a(q, ω)|2 (3)

where Sd is the diamagnetic term. Here fk,α is the fermionic spinon operator with k = (k, ω),

α is the spin label which may be expanded to N flavors α = 1 · · · N , a(q, ω) is the transverse

component of a U(1) gauge field and j(q, ω) is the transverse fermion current density. The

reader may recognize this as the familiar A · j coupling of electrons to electromagnetic

fields. Indeed, the only differences are that in spin liquids the gauge field is 2D and has been

introduced to enforce constraints. Therefore, e2 is initially infinite, i.e., the Maxwell term

Eq.(3) is absent. However, by integrating out high energy fermions, Eq.(3) will be generated

with e2 of order unity. We focus on the transverse component because unlike longitudinal

density fluctuations, transverse currents are not screened and lead to singular small q and

ω behavior. This fact was recognized long ago by Holstein, Norton, and Pincus,[2] who

pointed out that even in our 3 dimensional world, coupling of electrons to transverse gauge

fluctuations leads to a specific heat which goes as T ln T , in violation of Landau’s Fermi

liquid theory. Due to the small size of the fine structure constant and vF /c, this effect is

very small and has never been observed to my knowledge. Reizer extended this to 2D and

showed that the specific heat goes as T 2/3 while the fermion self energy goes as ω2/3.[3, 4]

This is a clear signature of non-Fermi liquid behavior, because the quasiparticle pole is

replaced by a power law singularity. The origin of this singularity is that Landau damping

converts Eq.(3) to an effective action of the form

S ′
a =

∑

q,ω

(
iω

vF q
N(0) + χq2

)
|a(q, ω)|2 (4)

where N(0) is the fermion density of states and χ is the Landau diamagnetic susceptibility.

The gauge field becomes overdamped, with ω scaling as q3. The abundance of soft gauge

fields relaxes the fermions rapidly, leading to a violation of Landau’s condition that the

quasiparticle relaxation rate must be smaller than its energy.

Equations (1–3) also describe the nematic quantum critical point in metals, where the

Fermi surface spontaneously distort to beak the lattice symmetry.[5] Signs of this nematic
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transition have been seen in Sr3Ru2O7 [6] and via the Nernst signal in YBa2Cu3O7.[7] In this

case a is a real field called the Ising nematic order parameter and j in Eq.(2) is replaced by

a suitable fermion bilinear operator. This is also referred to as the Pomeranchuk instability

of the Fermi surface.

The original work on Eqs.(1–3) was based on the RPA.[2–4] Over the years a great deal

of physical insights have been gained. Notably, Altshuler, Ioffe and Millis [8] and Polchinski

[9] formulated a 1
N expansion and emphasize that since the transfer of small q and ω boson

is important, in the large N limit a given Fermi momentum k0 is scattered to a nearby k

point by a q vector which is almost tangential to the local Fermi surface. It was shown that

the gauge field propagation is well described by Eq.(4) and the common belief was that a 1
N

expansion is possible.

The recent reexamination on this problem began with the paper by Sung-Sik Lee. Build-

ing on the insight of [8] and [9], Lee formulated a low energy effective action involving small

patches around a given k point. Two kinds of processes are important. The first involves

scattering between k vectors which are nearly parallel to each other (the one patch model)

and the second involves small angle scattering between k points on patches with parallel

but opposite normals (called the two patch model). Lee then carried out a careful analysis

of the Feynman diagrams. He showed that even for the one patch model, the 1
N expansion

is not convergent, i.e., an infinite summation of Feynman diagrams is needed at every order

in 1
N . He was able to organize these diagrams as planar diagrams characterized by the genus

number of the two dimension surface on which the Feynman diagrams are drawn, reminis-

cent of the observation by t’Hooft for large N QCD. Since the problem remains a strongly

coupled one, there is no way to compute these diagrams in a controlled manner. The hope

for a 1
N treatment of Eqs.(1–3) is dashed.

Metlitski and Sachdev followed up on Lee’s work and formulated a scaling theory of the

two patch model. They carried out a loop expansion and discovered a singular momentum

dependence of the fermion self energy at three loop order. However, with the two patch

model the difficulty of the 1
N expansion discovered by Lee is further amplified and a controlled

calculation is not possible.

What went wrong with the 1
N expansion? The traditional view is that the gauge field

propagation is of order 1
N because it is a string of fermion bubbles. If the fermion Green’s

function is of order 1, the expectation was that a loop expansion will provide a controlled
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1
N expansion. What Sung-Sik Lee noted is that while the fermion self energy is of order 1

N ,

there are higher order loop diagrams which are divergent and need to be regularized by the

self energy itself. The fact that the self energy is of order 1
N comes back to haunt us and

leads to a large contribution of these diagrams, invalidating the naive expectation. While

Lee’s theory is highly elegant, it also created a deep sense of pessimism. It looks like we do

not have a controlled example of a non-Fermi liquid theory in 2D after all.

Fortunately, this pessimism is short-lived and Mross et al. came to the rescue. They found

that the difficulties pointed out by Sung-Sik Lee can be bypassed formally by introducing a

double expansion. To be more precise, they introduced an extra parameter zb in the model

by replacing Eq.(3) by

S ′
a =

∑

k,ω

|k|zb−1

e2
|a(k, ω)|2 . (5)

The original problem corresponds to zb = 3. The case zb = 2 arises in the composite fermion

description of the half-filled Landau level in the presence of 1
r Coulomb interaction.[10] It

is known that the self energy Σ goes as ω ln |ω| and it is natural to expand around zb = 2.

The double expansion they propose is N →∞, ε = zb − 2→ 0 such that εN is finite. The

reason this works is the following. The fermion self energy now takes the form

Σ = −i
1

λN
sign(ω)|ω|

2
zb (6)

where

λ = 4π sin

(
2π

zb

)
γ

zb−2
zb (7)

with γ = 1
4π . Note that λN ∝ εN and goes to a constant in the limit chosen above. The self

energy then provides a finite cutoff for the divergent diagrams Lee was concerned with, and

a well defined loop expansion is restored. It should be noted that an ε expansion for any

fixed N was formulated by Nayak and Wilczek earlier and computed to first order in ε.[11]

Where they overlap the two methods agree, but the double expansion has the advantage

that higher order loop expansion is more easily evaluated. Indeed, taking advantage of the

hard work already done by Metlitski and Sachdev, Mross et al. evaluated the anomalous

dimension for the fermion ηf to order 1
N2 . The result turns out to be different for the nematic

critical point and the gauge field problem. In the former case ηf has a positive correction

of order 1
N2 while in the latter case, ηf is negative and less dominant. Mross et al. also

computed the 2kf response, confirming the enhancement predicted by Altshuler et al.[8] for

the gauge field problem.
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While there is no guarantee that the physical problem N = 2, ε = 1 is smoothly connected

to the large N small ε limit, the recent reexamination has greatly deepened our understand-

ing of this important class of problem. We can rest assured that a well formulated example

of non-Fermi liquid state exists.
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