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All solids at finite temperatures contain point defects such as vacancies and interstitials.
Even at very low concentrations, such defects have a pronounced effect on the transport
properties (e.g. electronic) of otherwise pure crystals. However, the effect of point defects
on the thermodynamic properties of crystals is small, simply because the mole-fraction of
defects is low. In fact, in most simple metallic and ionic crystals, but also in colloidal
hard-sphere crystals, the vacancy fraction (i.e. the fraction of empty lattice sites) close to
the melting transition is of the order 1 in 104.

In a recent preprint [1], Smallenburg et al. present an astounding simulation result: some
colloidal crystals may have vacancy concentrations that are almost three orders of magni-
tude higher than what has been observed before in simple, one-component crystals. The
paper of Smallenburg et al. reports numerical simulations of the phase behavior of systems
of hard, cube-shaped particles. At sufficiently high densities, such hard cubes form a simple
cubic crystal. The surprising result of Ref. [1] is that these crystals contain an equilibrium
concentration of vacancies that can be as high as 6%. This implies that any particle will on
average have more than one vacancy among its 26 neighbors. Using extensive free-energy
calculations, the authors show that the very high vacancy concentration has a pronounced
effect on the location of the melting transition. It should be stressed that such calculations
are far from trivial because, in a finite periodic system, the number of lattice sites and the
number of particles behave as independent variables [2, 3], yet in reality the number of
vacancies is fixed by the condition that the “chemical potential” associated with vacancies
must vanish (because vacancies are not conserved) [3].

Another striking feature of the calculations of Ref. [1] is that the crystallinity of the
samples with vacancies is actually higher than that of a corresponding system where the
number of particles is equal to the number of lattice sites. Looking at the average positions
of the particles in the crystal, one observes a perfect simple cubic lattice. Yet, looking at
the instantaneous snapshots of the crystal (see Fig. 1 - left), one cannot “see” vacancies: the
vacancies are delocalised along rows in the crystal lattice (Fig. 1- right). This means that
one cannot really speak of “vacancies” or “interstitials”, only of the difference between the
number of particles and the number of lattice sites. The fact that the “point” defects are
actually finite “line defects” raises many interesting questions and possibilities. The first is,
of course: why are vacancies delocalized? The most plausible explanation is related to the
fact that cubes can form a space-filling lattice without “interdigitation”: that means that
entire rows of particles can slide with respect to each other without necessarily creating
hard core overlaps. Yet, as Fig. 1(left) shows, the sliding of entire rows does not happen
- and this is probably due to the delocalised vacancies. A vacancy can delocalize until
it is blocked by a shifted row or by another delocalised vacancy. The entropic cost of
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Figure 1. Left: Snapshot showing the (projected) center-of-mass posi-
tions of a system of 403 hard cubes. Note that although the system contains
403 particles, there are 413 lattice sites, corresponding to a vacancy concen-
tration of more than 7%. This particular structure is mechanically stable,
but the maximal equilibrium concentration of vacancies is around 6% (see
Ref. [1]). Right: Snapshot of a system of hard cubes. The figure shows a
single plane that contains several extended vacancies in the plane. Some of
the extended vacancies have been highlighted in yellow.

delocalising an entire row would therefore be very high due to “vacancy excluded-volume”
effects: delocalized vacancies behave as a polydisperse “gas” of perpendicular hard rods
(similar to the well-known Zwanzig model for nematogens). One interesting question is:
what determines the length of delocalized vacancy? An upper limit is set by the vacancy-
vacancy interaction. If we assume that line vacancies cannot intersect (and that they are
not orientationally ordered) the maximum vacancy length L is determined by the vacancy
density ρ, such that ρL2 = O(1) - but, of course, the vacancy length could be less.

The high concentration of vacancies also has a pronounced effect on the diffusivity in
the crystal phase, because vacancies facilitate single-particle diffusion. But the fact that
vacancies are delocalized should lead to a very interesting consequence: mass transport
will be determined by the collective diffusion coefficient that should be significantly higher
than the single-particle diffusion coefficient. This is easy to understand: the motion of
a delocalized vacancy of length L over a single lattice spacing, would correspond to the
displacement of a particle over distance L. Hard-cube solids are clearly not “super solids”,
but their ability to flow whilst maintaining crystallinity should be very unusual.

Clearly, the work of ref. [1] raises many interesting questions, such as: what happens for
other particles that can form space-filling structures. In fact, in a recent paper, Agarwal
and Escobedo have presented a beautiful overview of the phase behavior of a wide range of
space-filling, polyhedral particles [4]. This paper shows evidence for high diffusivity of hard
cubes in the density regime where Ref. [1] finds a high vacancy concentration. Agarwal
and Escobedo also find high diffusivity for other polyhedral hard particles systems where
the possibility for “row translation” exists. However, the paper does not report collective
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diffusion constants. Refs. [1] and [4] differ in their interpretation of the phase that Ref. [1]
calls simple cubic and Ref. [4] calls cubatic. Ref. [1] shows that, at least for a 403 system,
translational order extends throughout the system - and this is why a discussion in terms
of a simple cubic crystal is justified. In order to know what happens in the thermodynamic
limit, a full-scale finite-size scaling analysis would be required. Evidence for a bond-ordered
liquid phase (a “tetratic” phase) in a system of two-dimensional hard squares was presented
some time ago by Wojciechowski and Frenkel [5]. This work was subsequently extended
by Donev et al. [6] to systems of hard rectangles. Ref. [5] did not explore the presence of
vacancies - and yet vacancies are likely to be just as important in two dimensions as in
three. Moreover vacancies make the system highly compressible and this may facilitate the
formation of bond-ordered phases.

Finally, it should be stressed that crystals of hard cubes or other polyhedral particles
are not purely hypothetical systems: with the recent advances in the manufacture of tailor-
made colloidal particles, all the phenomena discussed in the present commentary can be
investigated experimentally.
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