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Classical thermodynamics has been generalized in recent years to the case of meso- 
and microscopic systems where fluctuations play a crucial role and contribute 
substantially to work and heat. A stochastic description of those quantities is thus 
needed and various exact relations, such as Jarzynski (1997), Crooks (1999), 
Hatano-Sasa (2001) and generalizations thereof, are now well-established and have 
been verified experimentally in a number of systems (see Bustamante et al. (2005) 
for an introduction and Ritort (2008) for a more advanced and detailed review).  
 
In addition to the size of the system, another key factor brought into attention by out-
of-equilibrium relations is time, which was completely absent in thermodynamic 
adiabatic transformations. In stochastic thermodynamics (see, e.g., Seifert 2008) 
transformations can be driven at finite speed and some old and new questions 
become relevant and are worth consideration. Two such questions are the motivation 
and the main interest of the first two recommended papers: « What is the lower 
bound for the total entropy production or the average heat release in the process that 
interpolates between given states in a time interval of fixed length? » ; « What is the 
dynamical protocol that leads to such a minimal total entropy production or heat 
release?». The last question refers to time-dependent protocols, e.g. mechanical 
forces, external fluxes, fixing concentrations of some chemical species in chemical 
reactions, etc., that are supposed to drive the system of interest.  
 
The papers specifically consider an overdamped Langevin dynamics and establish a 
finite-time generalization of the classical Landauer principle (Landauer, 1961; 
Bennett, 1982). The latter states that the erasure of one bit of information during a 
computational process is coupled to heat exchanges with the thermal bath at 
temperature T and that the release of an amount of heat equal to at least kT(ln2) (on 
average) is necessary. The classical example is a double well potential with a high 



barrier that gets slowly deformed so as to end up having a single minimum. What is 
the minimum amount of heat if (as it is always the case) we are not willing to wait 
forever and need to drive the system at finite (non-infinitesimal) speed ? This type of 
question was already addressed by Schmiedl & Seifert (2007) for special cases 
where a solution for the driving protocol could be found analytically. The new papers 
demonstrate a general lower bound and, most importantly, establish a solid link with 
control theory (Bellmann, 1957; Kirk, 2004), the Monge-Kantorovich optimal mass 
transport (Villani, 2003) and the Burgers equation (Burgers, 1974). The final result is 
that the extra-cost generally decreases as the inverse of the time taken for the 
transformation whilst the constant of proportionality reflects the protocol that we 
employ to drive the system. The minimal value of this constant is achieved by driving 
the system with the protocol that solves the control problems mentioned above.  
 
The third recommended paper uses an elegant and ingenious system of a single 
colloidal particle trapped in a modulated double-well potential to realize 
experimentally a model of a one-bit memory and then measures the heat exchanges. 
Long transformations indeed saturate Landauer bound. The extra-heat released  for 
fast transformations is compatible with the finite-time lower bound derived in the 
second recommended paper and it will be of interest to experimentally drive the 
system with the optimal protocol to saturate the bound. Since all transformations in 
living organisms are obviously performed at finite speed, it seems fair to anticipate 
that the methods of stochastic thermodynamics will be important in the forthcoming 
years for quantitative investigations of biological systems.  
.  
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