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The concept that there might exist fundamental limits in many-particle quantum systems on the relax-
ation of a current, or more broadly the development of thermal equilibrium, has a long history. One extreme
is that no thermalization occurs at all, as for example in a many-body-localized system. This commentary
is about recent work that in rough terms is about the opposite limit: are there limits to how fast a system
can achieve equilibrium or “chaos” (to be defined momentarily)? Recent work by Maldacena, Shenker, and
Stanford [1] and by Kitaev (unpublished) answers this question in the affirmative and gives a specific bound
on chaos that is saturated in one class of models.

Condensed matter interest in this question was stimulated by long-standing puzzles in transport in
complex materials such as the normal state of cuprates and heavy fermion materials. (Since this is a brief
commentary and not a review article, I will cite a few out of many works and the reader is encouraged
to look at references therein for the full story.) These materials show anomalous, often linear, temperature
dependences of the resistivity that do not appear to be controlled by disorder but rather by strongly correlated
behavior of the electrons [2]. More quantitatively, many materials [3] show current relaxation times 7, inferred

from measured conductivity, with
h

T2 (1)
Infrequently, other power-laws than 7~! are observed, such as 7~3/4 in certain heavy-fermion compounds [4].

Some different forms of the bounded-relaxation concept in quantum many-body physics are as follows |5,
6, 7, 8. The classic Ioffe-Regel criterion [5] in a metal is that the mean free path cannot meaningfully be
shorter than a lattice spacing, but this depends on a quasiparticle scattering picture that is not obviously
applicable in correlated systems. The specific form (1) was stated by Sachdev in the context of nonzero
temperature above a quantum critical point [6], where the temperature provides the only natural scale
that could determine relaxation, together with examples such as the superconductor-insulator transition
of a bosonic model with particle-hole symmetry. A remarkable calculation using string-theoretic methods
by Kovtun, Son, and Starinets [7] conjectured a general inequality involving the shear viscosity n and the
entropy density s,

s ~ 4mkp’ 2)
which applies in a wide range of fluids but has small violations in some theoretical large-N models. Intro-
ducing a velocity ¢ and diffusion constant D = c¢?7, which unlike the shear viscosity exists in d = 1, the
viscosity bound (2) can be connected to the relaxation-time bound (1) [7, §].

The new work is concerned not with relaxation but with the onset of chaos. In classical systems, chaos
can be defined via exponential separation of trajectories: two initially similar states become very different at
a later time, and the Lyapunov exponent gives the rate of growth of the separation. Nalve generalization to
quantum mechanics does not work if we define the difference between two states as the overlap, since that
is constant in time:

n>h
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So one needs to find a different definition, and Ref. [1] looks at how the value of one observable V' at time
0 influences another observable W at time ¢. This should be measured via some commutator of V' (0) and
W (t); the specific quantity that winds up being amenable to their analysis is

F(t) =Tr [yV(0)yW (t)yV (0)yW ()] (4)



where the operator y corresponds to a 7/2 rotation along the imaginary-time cylinder:
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Then F(t) — 0 as t — oo is a viable quantum definition of the so-called butterfly effect, the disappearance
of the statistical influence of the earlier observable on the later one, and we label the time scale for F' to
vanish the scrambling time t,.

There is a shorter time scale t4, which the authors call a dissipation time, after which F' takes a nonzero
constant value Fy. Roughly, dissipation or relaxation corresponds to a weak form of thermalization, after
which standard local observables typically relax close to their equilibrium values; scrambling or the butterfly
effect is a very strong form of thermalization, after which two initial states are indistinguishable without
measuring a macroscopic number of observables. [9] Kitaev emphasized in 2014 that the onset of scrambling
and the butterfly effect will initially grow exponentially, in the sense

Fy—F(t)=cexpApt+..., (6)

and some large-N theories have small ¢ = 1/N? and thus a parametric separation between dissipation and
scrambling times. (A technical note: the derivation of the bound depends on large N and could have
violations of order 1/N?, compared to violations of the viscosity bound (2) at order 1/N.) The punchline of
Ref. [1] is a specific bound on the Lyapunov exponent
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The argument for this result is “elementary” in the sense of not requiring an AdS/CFT correspondence
(basically, a dual representation of the problem as a gravity theory) or other technology, but depends on
some fairly technical complex analysis in order to connect real-time dynamics with imaginary time where
h/(kpT) is a natural scale. It is worth pointing out that such bounds were motivated in part from observing
that many models with gravity duals are “fast scramblers” (see [10] and other references in [1]) saturating the
bound, and this may be another case, similar to entanglement entropy [11], where AdS/CFT correspondences
lead to conjectures that turn out to be quite general and derivable by simpler methods.

A next question is how to find explicit examples where this bound is saturated. (Since presumably
the dissipation time for any current should be shorter than the scrambling time, such bounds likely give
bounds on current relaxation as well.) Two KITP talks by Alexei Kitaev, available online, give an answer
by building a precise holographic version of a simplified version of the Sachdev-Ye model [12], which has
random, infinite-ranged interactions that previously allowed some properties to be solved via a mean-field
approach. A very recent preprint [13] shows that the zero-temperature entropy of both Kitaev’s model and
the Sachdev-Ye model is connected via holography to the famous Bekenstein-Hawking black hole entropy
formula. Future work, one hopes, will connect the deep fundamental bounds with more realistic condensed
matter Hamiltonians and ultimately explain the experimental observations. It is comforting to see that,
along with the current interest in exotic equilibrium phases and far-from-equilibrium dynamics, there is
significant progress on near-equilibrium problems of linear response and scrambling.
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