
Increasing Redundancy Exponentially Reduces Error Rates
during Algorithmic Self-Assembly

ACS Nano ASAP, 2015: http://pubs.acs.org/doi/abs/10.1021/nn507493s

Authors: Rebecca Schulman, Christina Wright, and Erik Winfree

Recommended and a commentary by Randall D. Kamien, University of Pennsylvania

When riding your bike or driving your car have you ever zigged when you should have
zagged? If you do it how can you possibly expect non-sentient molecules, colloids, and
other building blocks to always know where to go? One can tune the shapes (entropic and
enthalpic) of the colloids [1], construct complex interaction potentials between them [2], or
make a heterogeneous mix of components with specific interactions [3]. One can arrange for
a detailed and delicate experimental protocol to help the colloids along at critical moments
[4] either in an open-loop or closed-loop situation, the latter requiring the introduction of
various “demons” and “daemons” to watch over the assembly [5]. These problems live at
the nexus of statistical mechanics in and out of equilibrium, geometry, and information
theory. In recent work by Schulman, Wright, and Winfree, the authors have developed,
deployed, and experimentally tested another route to faithful production. In a vein akin
to kinetic proofreading [6] and error-correcting codes [7], they have created building blocks
that have a double-checking feature that halts the growth of materials that miss the targets.

Figure 1. Building the weft (the zig-zag).

They have built on their earlier work of programming DNA tiles. Each tile has four
active corners that have unpaired DNA strands in complimentary pairs, for instance upper
left to lower right and lower right to upper left. The sequences have been optimized to make
the binding as specific as possible. To build a two-dimensional pattern takes two steps; first,
a weft is made as shown in Figure 1 (the weft is strand that moves from left to right as one
weaves. The warp is perpendicular to the weft.). The colored blocks labeled A and B hold
the tiles together along with end caps (not shown) that make the weft into a single zig-zag.
Why the colors and labels? Each color and label is a different strand/complimentary-

1



strand link and the colors are constant along lines going from bottom left to top right.
The two types (for instance, “blue A” and “blue B”) are necessary so that the doubled
end caps have a unique position enforcing the connectivity of the weft – an A row grows
to the right and a B row grows to the left.

Now the replication. Along one strand of the weft one chooses a binary code, repre-
sented by yellow and green in Figure 2. After programming a row of data the available
blocks will automatically propagate the pattern over and over again, forming an arbitrarily
long ribbon. All that is required is that there are no “not” tiles that change yellow to green
or green to yellow from lower left to upper right.

Figure 2. Programming the warp. We can pick a sequence of yellow
and green bits along the weft, the data (circled), and have it self
propagate as the ribbon grows along the warp.

This modality was pursued by some of the authors in prior work [8]: now they have
embellished their assembly procedure by copying each of the bits, for instance, copying
each bit so that YGYY becomes YYGGYYYY – twice the bits. That might seem just
like an extra layer of complexity that could be achieved by using fatter tiles. But, just like
the presence of an intermediate state in kinetic proofreading, doubling the data makes the
replication more and more reliable. The left Y and the right Y are made of different blocks.
Once a right Y, for instance, attaches to the ribbon, it favors the left Y next. But if, by
accident, a right G attaches in the right Y’s spot then there is no next tile that fits. The
left G is not happy because of the left Y in the preceeding pick (row) and the left Y does
not want to be next to a right G. Two mistakes are needed to keep the ribbon growing
(see Figure 3 in the paper). Tripling the redundancy only makes this effect stronger.
The probability of stopping grows as a power of the redundancy – error correction! This
paper systematically explores this qualitative insight in [9] by tripling and quadrupling the
message to achieve reliable propagation of information.

Not unlike choosing the right team, the secret is to have intelligent designers who can
build reliable building blocks.

2



[1] J. A. Millan, D. Ortiz, G. van Anders, and S.C. Glotzer, “Self-assembly of Archimedean
tilings with enthalpically and entropically patchy polygons”, ACS Nano 8 (2014) 2918.

[2] M. Engel, P.F. Damasceno, C.L. Phillips, and S.C. Glotzer, “Computational self-
assembly of a one-component icosahedral quasicrystal”, Nature materials 14 (2015)
109.

[3] A. Murugan, Z. Zeravcic, M.P. Brenner, and S. Leibler, “Multifarious assembly mix-
tures: Systems allowing retrieval of diverse stored structures”, PNAS 112 (2015) 54.

[4] W.M. Jacobs, A. Reihnardt, and D. Frenkel, “Rational design of self-assembly path-
ways for complex multicomponent structures”, PNAS 112 (2015) 6313.

[5] S. Deffner and C. Jarzynski, “Information Processing and the Second Law of Ther-
modynamics: An Inclusive, Hamiltonian Approach”, PRX 3 (2013) 041003.

[6] J.J. Hopfield, “Kinetic Proofreading: A New Mechanism for Reducing Errors in
Biosynthetic Processes Requiring High Specificity”, PNAS 71 (1974) 4135; J. Ninio,
“Kinetic amplification of enzyme discrimination”, Biochimie 57 (1975) 587.

[7] C.E. Shannon, “A Mathematical Theory of Communication”, The Bell System Tech-
nical Journal 27 (1948) 379.

[8] R. Schulman and E. Winfree, “Synthesis of crystals with a programmable kinetic
barrier to nucleation”, PNAS 104 (2007) 15236.

[9] R.D. Barish, R. Schulman, P.W.K. Rothemund, and E. Winfree, “An information-
bearing seed for nucleating algorithmic self-assembly”, PNAS 106 (2009) 6054.

3


