Loops of Dirac points in three dimensions

Line of Dirac nodes in hyperhoneycomb lattices
Kieran Mullen, Bruno Uchoa and Daniel T. Glatzhofer, Phys. Rev. Lett. 115, 026403
(2015)

Recommended with a commentary by Rahul Nandkishore, CU Boulder

Introductory courses in solid state physics typically begin with a discussion of (Fermi
liquid) metals and band insulators. At zero temperature in d spatial dimensions, the former
have a Fermi surface of dimension d—1 (and co-dimension [1] 1) where the chemical potential
intersects a partially filled band, while the latter have no Fermi surface, with the chemical
potential sitting in the band gap. The discovery of Dirac semimetals (of which graphene is
probably the earliest and certainly the most famous example) has introduced a qualitatively
new possibility. In Dirac semimetals, the conduction and valence bands touch at a discrete
set of points, and when the chemical potential is tuned to that point then there arises a zero
dimensional Fermi surface with co-dimension d, which in spatial dimensions two and three is
clearly intermediate between a metal and a band insulator. This fact, combined with the =
Berry phase associated with Dirac points, is responsible for much of the rich phenomenology
that has captivated condensed matter physicists over the past decade.

Very recently, it has been realized that in three spatial dimensions there can arise Dirac
line semimetals, where the conduction and valence bands touch on a line. To my knowledge,
this notion was first advanced in [2], albeit in a context where having the line contact at
constant energy required considerable fine tuning. The focus of [3] is on a situation where
this line contact is naturally non-dispersive (i.e. at constant energy), such that the Fermi
surface at perfect compensation consists of a line of Dirac nodes with co-dimension two -
a case intermediate between three dimensional Dirac point semimetals and ordinary three
dimensional metals. Such ‘Dirac line semimetals’ provide a qualitatively new playground
for solid state physics, of (one may hope) comparable richness to Dirac point semimetals.
Specifically, Mullen, Uchoa and Glatzhofer show that in a certain class of three dimensional
hyperhoneycomb lattices (Fig.1), a simple tight binding model (without spin orbit inter-
action) gives rise to a closed loop of Dirac points at zero energy. As pointed out in [2],

such a bulk Dirac line node also results in a flat band of surface states. The simplest such
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FIG. 1. (a) and (b) show the unit cells of the two simplest hyperhoneycomb lattices that realize
Dirac loops in their tight binding dispersion. Subfigure (c) shows the Fermi surface at small but
non-zero doping - the Fermi surface is a torus in momentum space which shrinks to a circle as the

doping is taken to zero. Figures are taken from [3].

lattice supporting a loop of Dirac nodes is a hyperhoneycomb lattice with a four site unit
cell, which the authors argue should be a metastable allotrope of carbon. Such a three
dimensional allotrope of carbon, if realized, may then provide a paradigmatic example of a
Dirac line semimetal. Alternative material realizations have also been discussed elsewhere.
My interest, however, was piqued more by the universal physics that should be associated
with such a loop of Dirac points, regardless of the material realization.

The low energy k - p Hamiltonian for the material discussed in [3] takes the form

H(p) =Y (0:()dps + v,(¢)0py) 0 + v2(6)0p-0- (1)

p

where o, and o, are Pauli matrices, the dp; denote the momentum offset from the closest
point on the Dirac loop, the v; are the Fermi velocities in the corresponding directions, and
0 < ¢ < 27 is an azimuthal angle parametrizing position along the loop. Much of the key
physics, however, can be exposed by a cylindrically symmetric ‘toy model” where the Dirac
loop is a circle of radius pg in the x-y plane. This has a low energy k - p Hamiltonian of the

form

H(p) = Z UJ_(pJ_ - pF)Ux + VP20~ (2)

where p; = /p3 + p;. The dispersion takes the form

Ei(p) = £/ (vL(pL — pr))® + (v:p)? (3)

This toy model contains a great deal of physics. At perfect compensation, the Fermi

surface is a circle with radius pr and codimension two, and there is a m Berry phase along any



loop that interlocks the Fermi surface. The low energy density of states vanishes linearly with
energy - much as in graphene, but now in three dimensions. This too is intermediate between
a metal (where the low energy density of states is constant) and a perfectly compensated
clean Dirac point semimetal (which in three dimensions has a quadratically vanishing low
energy density of states) Meanwhile, on doping away from perfect compensation the Fermi
surface turns into a torus.

Dirac loops in three dimensions can support new phenomena not conventionally associ-
ated with 3D systems. The authors of [3] highlight this by pointing out one particularly
striking new phenomenon: a three dimensional quantized Hall effect in the presence of an
constant azimuthal magnetic field. Intuitively, if we consider a single point on the Fermi
ring, the Hamiltonian v, dp | o, +v.p.o. looks just like the Hamiltonian for a two dimensional
Dirac fermion moving in the p; — z plane, and the application of an azimuthal magnetic
field should give rise to a quantized Hall response just as the application of an out of plane
magnetic field gives rise to a quantized Hall response for the two dimensional Dirac fermion.
More formally, a magnetic field B B¢QA5 may be represented by a ‘Landau gauge’ vector
potential A = —Bypz, where p = \/m Introducing the vector potential into the
Hamiltonian through the usual minimal coupling prescription, and squaring the Hamilto-
nian, Mullen et al find that the Hamiltonian can be diagonalized by introducing ladder

operators, and the spectrum takes the form

Ey = sign(N)(v2v1v,/15)\/|N| (4)

where Ip < 1/ V/B is the usual magnetic length i.e. the spectrum breaks up into a (particle-
hole symmetric) tower of Landau levels indexed by integer IV, with a ‘square root’ depen-
dence of energy on magnetic field and on Landau level index, just as in graphene. When
the chemical potential lies in the gap between the N' and (N + 1) level, the system
has 0., = (2N + 1)pre?/h, allowing for a factor of two coming from spin degeneracy i.e.
a radial current induces a voltage bias along the 2z axis, with a quantized proportionality
constant that depends linearly on the Fermi radius. Colloquially, an azimuthal magnetic
field produces a Hall response in the Z — p plane that is like the response of pr copies of
graphene to an out of plane field. This behavior should survive even when the Fermi line
is deformed away from a perfect circle, as long as the bulk gaps do not close, and thus

may well be observable in Dirac loop materials. Of course, to produce a radially uniform



azimuthal magnetic field one would have to apply a time varying electric field o< 1/p along
the 2 direction, which experimentally may not be a simple task.

The combination of a Berry phase, a linearly vanishing low energy density of states in
three dimensions, and a non-trivial Fermi surface topology provides a qualitatively new play-
ground for condensed matter physics, and there remain many questions still to explore. For
example, what are the signatures of Dirac loops in transport, aside from the three dimen-
sional quantum Hall effect discussed above? What is the effect of disorder? Of interactions?
Of a combination of the two? What new phases can we access starting from Dirac loop
systems and turning on interactions, disorder, and/or external fields? How does the phe-
nomenology differ for Dirac loops and for Weyl loops (without spin degeneracy)? And where
and how will this new physics be seen experimentally? While some preliminary steps along
these directions have been taken [2, 4, 5], much surely remains to be done. A new chapter

has been opened in the study of Dirac materials. There are exciting times ahead.

[1] The codimension is the number of directions in which one can move away from the Fermi surface.
For a traditional Fermi liquid metal, the codimension is 1 - the direction normal to the Fermi
surface. A Dirac point semimetal, however, has co-dimension d, and a Dirac line semimetal has
codimension d — 1. The codimension d. is important in part because it controls the low energy
density of states, which scales as v(E) ~ E%~! for systems with linear dispersion, and this
in turn controls the response functions, the relevance/irrelevance of disorder and interactions,
and much besides.
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