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When exerting a force on a thin solid sheet, we often take it as granted that the sheet will deform by bending rather
than by developing strain. This expectation stems from the sharp contrast between the sheet’s bending and stretching
moduli, which diverges as the sheet becomes thinner (at a rate proportional to the square of the sheet’s thickness
t). As was realized already by Euler more than two centuries ago, this dramatic difference between the two types of
energetic costs is the essence of a fundamental instability: the buckling of solid plates and rods under compressive
loads. However, sheets may be constrained in such a way that a strain-free deformation is impossible, for instance
by confining a piece of paper in a small box. In such circumstances, a common assumption is that the unavoidable
strain localizes in core zones – vertices and ridges – whose characteristic sizes vanish in the singular limit t → 0
of an infinitely thin sheet [[5, 13, 15, 20]. The emergence of such “stress focusing” zones enables the rest of the
sheet to remain strain-free, by deforming into developable pieces, such that the elastic energy in most of the sheet
stems only from bending (except at the strained core zones). A basic example of a developable shape (i.e. with zero
Gaussian curvature) is a cylindrical surface, and an example for a non-developable surface is a spherical cap (which
has a positive, constant Gaussian curvature). The intimate link between developability and strain can be easily
demonstrated by deforming a sheet of paper into these shapes. A cylindrical shape is obtained easily and smoothly,
whereas deformation to a spherical cap typically leaves the paper with scars, indicating on the presence of domains
with large strain.
In a recent paper [9], Grosso and Mele used atomistic simulations to study the response of graphene to an imposed

dislocation in the lattice (generated by removing atoms from a finite strip in a flat graphene sheet and rejoining
their neighbors, Fig. 1a,1b). The idea to study graphene’s response to this type of defect (which the authors term
“nano-kirigami”) was motivated by a recent proposal for using kirigami – the art of folding and cutting paper – for an
efficient construction of 3D faceted structures from inextensible planar lattices ([4] and see also a related commentary
by M. Bowick [3]). However, what Grosso and Mele found in their simulations was very different from the faceted
shapes described in [4]. The simulated graphene did not respond by decomposing into flat facets separated by sharp,
stress-focusing creases (Fig.1c,1d); instead, the sheet adopted a smooth, curved shape (Fig. 1e,1f).
The surprise in this result can be understood by recalling previous studies that addressed the response of thin

sheets to localized perturbations, e.g. by pushing a sheet of paper through a ring [5], or – in a work by Guven et
al. which is closely related to Grosso and Mele’s study – by creating an artificial “dislocation” at its center (by
cutting out an angular sector, rotating and re-inserting it, and stitching all open cuts [10], see bottom right of Fig. 1).
In those studies, the sheet is assumed to attain a developable shape, which is strain-free everywhere except at the
vicinity of a localized defect and perhaps at some ridges separating flat or conical sections [21]. However, despite the
apparent similarity between the shapes (Fig. 2 [10] and Fig. 1e,1f [9]), the deformation of the simulated graphene is
non-developable; instead, the Gaussian curvature is found to vanish only upon (spatial) averaging, in a way that
may arguably lower the strain, but is not being eliminated altogether. Thus, rather than focusing the unavoidable
strain into small core zones, such that the energy is governed by the shape’s curvature outside the core, the energetic
cost of the deformed graphene sheet is governed both by strain and by the curvature of the shape. Motivated by their
observation, Grosso and Mele proposed “nano-kirigami” rules for the shapes attained by graphene sheets in response
to localized defects: Although the deformation generally consists of significant strain, only the bending part of the
elastic energy is minimized, while only the average Gaussian curvature of the shape is required to vanish.
Is it possible that such “nano-kirigami” rules do characterize the ultimate response of very thin solid sheets to

localized defects? Obviously, a graphene sheet cannot be made thinner, but one may increase its lateral size R
(although a systematic numerical study may require a considerable computation time). Increasing the ratio between
R and the atomic-scale thickness t (known as the von-Karman number vk = (R/t)2), effectively increases the contrast
between the characteristic energies of stretching and bending. Thus, when R ≫ t, it seems natural to expect that
the defected sheet will attain a developable shape, whose Gaussian curvature (and consequent strain) vanishes almost
everywhere, rather than only on average. Yet, the Grosso-Mele’s finding indicates on a surprisingly large transient
regime (in the simulations of [9] (R/t)2 ∼ 1000), at which the deformed sheet is characterized by an intricate balance
between curvature and strain, and cannot be assumed inextensible, as is often done.
There has been a considerable interest lately in classifying the distinct ways by which elastic sheets approach a

strain-free (isometric) deformation in the singular limit of vanishing sheet’s thickness. In addition to studies that
addressed various types of developable (or piecewise developable) shapes [10, 12, 20], various groups generalized this
idea to sheets whose strain-free state is associated with a non-flat metric (“incompatible elasticity”) [7, 8, 11, 16], and
to situations where the deformed sheets are subjected to weak tensile loads and reduce strain through non-developable
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FIG. 1. Panels (a-f) are from Fig. 1 of [9] (Courtesy of E.J. Mele, see [9] for details). Panels (a,b) show the method for creating
a dislocation in the graphene lattice by removing a row of atoms (a) and re-joining the two adjacent rows (b). The red sites
mark the resulting dislocation which consists of complementary defects in the hexagonal lattice (a 5-ring and a 7-ring). Panels
(c,d) show two possible modes of deformation (termed “up-up” and “up-down”, respectively) to flat facets separated by sharp
creases [4]. Panels (e,f) show the actual deformations in the simulated graphene sheet. The figure on the left (from Fig. 2
of [10], courtesy of J. Hanna) describes a developable deformation of a sheet, obtained upon cutting out an angular section,
displacing slightly its apex, rotating and re-inserting it into the sheet (see [10] for details).

shapes riddled with wrinkles, folds [14, 19], or grain boundaries in crystalline sheets [1]. Other studies considered
situations in which certain body forces or boundary constraints prevent the elimination of strain [2, 6, 17, 18]. The
behavior found by Grosso and Mele, where the energy of the deformed sheet consists of comparable levels of strain
and bending, is different from any of those mechanisms, demonstrating once again the surprisingly rich and complex
phenomenology that springs from the deceptively simple energy of elastic sheets.
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