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The	use	of	systems	of	cold	atoms	as	“quantum	simulators”	has	blossomed	over	the	past	few	
decades	leading	to,	among	other	things,	the	recent	experimental	studies	of	many-body	
localization	(MBL)	of	Schreiber	et	al.	[1]	and	Bordia	et	al.	[2]		Designing	these	experiments	
and	understanding	the	results	built	on	earlier	experimental	demonstrations[3]	and	
discoveries[4]	as	well	as	the	development	of	techniques	for	preparing	initial	states	and	
reading	out	their	subsequent	evolution.			
	
Discussions	of	MBL	usually	begin	with	the	well-established	phenomenon	of	Anderson	
localization	of	single-particle	states.	[5]	The	question	which	Anderson	himself	raised	was	
whether	this	localization	would	survive	in	the	presence	of	interactions.	This	question	has	
been	the	subject	of	considerable	theoretical	study,	culminating	in	recent	work	suggesting	
that	the	combination	of	randomness	and	interactions	can	lead	to	a	complete	spectrum	of	
localized	many-body	states	for	which	thermalization	would	not	occur.[6]		
	
From	the	perspective	of	condensed	matter	physics,	it	is	not	clear	how	MBL	phenomena	can	
be	realized	for	electrons	in	solids	since	phonons	act	as	a	thermal	bath.		However,	
theoretical	work	on	MBL	suggests	that	it	would	be	of	interest	to	study	whether	thermally	
isolated	interacting	systems	evolve	to	some	kind	of	internal	equilibrium	or	remain	stuck	in	
non-thermal	states.		In	this	regard,	cold	atom	systems	are	ideal	since	they	allow	high	
degrees	of	isolation;	they	can	be	prepared	in	tailored,	out	of	equilibrium	initial	states;	and	
the	periodic	and	random	potentials	as	well	as	the	interparticle	interactions	can	be	tuned	
over	wide	ranges.		
	
Anderson	localization	was	demonstrated	for	cold	atoms	in	a	Bose-Einstein	condensate	in	a	
quasiperiodic	potential.[3]		This	system	is	described	by	the	Aubry-Andre	Hamiltonian,	with	
bosons	hopping	with	amplitude	J	in	a	1D	periodic	potential	onto	which	an	incommensurate	
“random”	potential	of	strength	Δ	is	superimposed.	This	model	is	known	to	have	all	states	
localized	for	Δ/J	>	2,	and	the	localization	length	decreases	with	increasing	Δ/J.		The	bosons	
are	rendered	non-interacting	by	tuning	the	interparticle	Feshbach	resonance	to	zero	
interaction	strength.		The	condensate	was	initially	confined	to	a	small	region	by	a	trap	that	
was	then	turned	off,	allowing	the	bosons	to	diffuse.		For	smaller	values	of	Δ,	the	condensate	
expanded,	but	for	larger	values	the	size	of	the	condensate	cloud	remained	fixed,	
demonstrating	localization.		
	
Diffusion	and	transport	for	interacting	cold	fermions	hopping	in	a	periodic	potential	were	
studied	in	[4].		The	effective	Hamiltonian	for	this	system	is	the	Hubbard	model	on	a	cubic	
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lattice,	where	the	interaction	parameter,	U,	could	be	positive,	negative	or	zero.		The	atoms	
are	initially	confined	to	a	cloud	about	15µ	in	diameter	and	then	the	confinement	in	the	
horizontal	plane	is	removed,	allowing	the	cloud	to	expand	freely	in	two	dimensions.		For	
U=0,	the	expansion	is	ballistic	and	the	cloud	evolves	into	a	square	shape,	mirroring	the	
square	symmetry	of	the	hopping	Hamiltonian.		For	non-zero	interactions,	the	density	
profile	changes	drastically,	with	the	pattern	at	the	edges	remaining	square,	but	with	a	
circular	component	at	the	center	where	the	interactions	are	most	effective.	The	
interpretation	is	that	the	circular	component	is	composed	of	particles	moving	diffusively,	
due	to	interactions,	while	the	motion	is	ballistic	at	the	edges	of	the	square.		A	remarkable	
and	unanticipated	feature	of	these	observations	is	that	the	time	evolution	of	the	cloud	
depends	only	on	|U|	and	not	on	the	sign	of	the	interaction.	The	explanation	for	this	was	
found	in	a	symmetry	of	the	Hubbard	model	on	a	bi-partite	lattice,	where	the	dynamics	are	
unchanged	for	U	!	-U.	
	
In	principle,	one	could	study	MBL	the	same	way	that	Anderson	localization	was	studied	in	
Ref.	[3],	but	Ref.	[4]	showed	that	free	expansion	with	interactions	is	complicated	by	the	
edges	and	center	behaving	differently.		Schreiber	et	al.	[1]	designed	an	experiment	in	which	
the	observable	quantity	is	an	internal	degree	of	freedom	of	a	confined	system.		They	
developed	a	method	for	loading	fermionic	atoms	(using	the	two	lowest	hyperfine	states	of	a	
degenerate	Fermi	gas	of	40K	atoms)	into	every	second	well	of	a	deep	periodic	potential.		
Each	well	(or	lattice	site)	has	either	0,	1	or	2	fermions.	They	then	turn	on	the	quasi-random	
potential	of	strength,	Δ,	while	lowering	the	periodic	potential	to	allow	hopping	with	
frequency,	J,	and	tune	the	Hubbard	interaction	U	via	a	Feshbach	resonance.			
	
As	in	Ref.	[3],	the	system	is	described	by	a	1D	Aubrey-Andre	model,	but	for	spin	½	fermions	
with	interactions.	They	monitor	the	time	evolution	of	the	alternating	density	by	measuring	
the	imbalance	in	occupation	of	even	and	odd	sites,	I=(Ne-No)/(Ne+No).		Results	are	shown	
only	for	times	up	to	35τ,	where	τ=ℏ/J	is	the	tunnelling	time,	but	this	is	sufficient	to	see	clear	
effects	of	disorder	and	interactions.	The	experimental	system	consists	of	multiple	1D	chains	
or	tubes	of	about	200	sites,	each	described	by	the	same	Hamiltonian	(although	the	trap	
potential	varies	from	the	center	tubes	to	the	edge	tubes)	and	the	potential	wells	are	
sufficiently	deep	in	the	orthogonal	direction	that	these	tubes	are	taken	to	be	non-
interacting.			The	measured	imbalance	is	an	average	over	all	the	1D	tubes.			
	
The	initial	out-of-equilibrium	state	is	prepared	with	an	imbalance	close	to	1	(>0.9)	and	then	
allowed	to	relax.	After	a	few	tunnelling	times,	the	imbalance	approaches	a	stationary	value	
that	is	zero	for	zero	disorder,	but	for	stronger	disorder	is	non-zero	and	increasing	with	
disorder.		For	example,	at	Δ/J=8,	the	stationary	imbalance	is	~0.6,	both	for	U=0	and	U=10J,	
in	striking	contrast	to	the	Δ=0	result.	For	non-interacting	fermions	the	measured	stationary	
imbalance	is	a	monotonically	increasing	function	of	the	disorder,	Δ/J		that	agrees	with	
numerical	results	for	the	Aubrey-Andre	model	for	a	finite	chain	in	a	trap.	(The	trap	
significantly	broadens	the	transition	at	Δ=2J.)		
	
As	a	function	of	interaction	strength,	U/J,	the	stationary	imbalance	has	a	“W”	shape.	As	
discussed	above,	the	dynamics	(and	consequently	the	imbalance)	are	symmetric	around	
U/J=0,	and	the	effect	of	weak	interactions	is	to	slightly	reduce	the	long-time	imbalance,	i.e.	
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to	reduce	the	degree	of	localization,	relative	to	the	non-interacting	case.	However,	for	|U|	>	
5J,	the	long-time	imbalance	increases	with	interaction,	and	at	large	|U|	the	system	is	as	or	
more	localized	(larger	stationary	imbalance)	than	in	the	non-interacting	case,	where	the	
large	|U|	imbalance	depends	on	the	fraction	of	doubly	occupied	sites	in	the	initial	CDW	
state.	The	same	W	shape	and	dependence	on	double	occupation	is	seen	in	model	DMRG	
calculations.		All	these	observations	are	consistent	with	MBL	for	the	disordered,	interacting	
case.	
	
Bordia	et	al.[2]	extended	this	work	by	studying	the	effect	of	coupling	the	1D	chains.	They	
varied	the	interchain	hopping,	Jʹʹ,	by	varying	the	well	depth	in	the	orthogonal	direction.	The	
system	corresponds	to	~120	1D	chains	of	~200	lattice	sites,	with	each	chain	described	by	
approximately	the	same	Aubrey-Andre	model,	with	interactions.		In	particular,	each	chain	
has	the	same	disorder	potential	but,	due	to	the	trap,	the	density	varies	from	the	center	
chains	to	those	near	the	edge.		The	disorder	strength	is	set	at	Δ=5J	to	be	well	within	the	
localized	regime	observed	in	Schreiber	et	al.,	while	Jʹʹ	and	U	are	varied.		Comparing	the	time	
evolution	of	the	imbalance	for	the	1D	(Jʹʹ≤10-3J)	and	the	Jʹʹ=J	2D	systems,	very	different	
behavior	is	seen	for	the	non-interacting	(Anderson	localization)	and	interacting	(MBL)	
cases.		For	U=0,	the	dynamics	is	almost	the	same	in	the	1D	and	2D	cases,	both	displaying	the	
same	plateau	observed	in	Ref.	[1]	for	times	between	about	2τ	and	40τ.	However,	the	
interacting	2D	case	shows	fast	decay	with	no	plateau.	Note	this	is	not	a	general	random	2D	
system	since	the	disorder	is	the	same	in	each	chain.	Rather	it	is	an	array	of	identical	
disordered	chains	where	particles	can	hop	freely	between	chains.	The	difference	between	
the	non-interacting	and	interacting	systems	is	striking	and	Bordia	et	al.	interpret	the	
interacting	case	as	the	chains	collectively	acting	as	thermal	baths	for	each	other.		
	
Bordia	et	al.	find	an	imbalance	lifetime	for	the	non-interacting	case	of	about	104τ,		
independent	of	Jʹʹ,		which	is	attributed	to	photon	scattering	and	noise	in	the	optical	fields.	
With	interactions,	the	Jʹʹ	dependence	of	the	imbalance	lifetime	is	linear	on	a	log-log	plot	and	
does	not	saturate	even	at	the	smallest	Jʹʹ/J~10-3,	being	still	limited	by	the	residual	
interchain	couplings.		
	
In	summary,	for	“decoupled”	1D	chains,	the	experiments	find	a	striking	difference	in	the	
dynamics	between	Δ=0,	where	the	initial	out-of-equilibrium	CDW	state	quickly	thermalizes	
within	only	a	few	τ	and	large	Δ,	where	the	system	only	thermalizes	on	a	very	long	timescale	
that	appears	to	be	determined	by	the	small	residual	interaction	between	the	1D	chains.		
The	dynamics	in	the	latter	case	of	stronger	disorder,	depend	on	the	strength	of	interaction,	
and	agree	well	with	numerical	results	for	times	less	than	~40τ.		Furthermore,	Bordia	et	al.	
found	the	interacting	localized	phase	to	be	very	sensitive	to	any	hopping	between	the	1D	
chains,	in	sharp	contrast	to	the	case	of	(non-interacting)	Anderson	localization.		These	
experiments	suggest	that	if	one	could	further	isolate	the	1D	chains	from	each	other,	the	
stationary	imbalance	in	the	localized	phase	could	be	observed	over	noticeably	longer	times	
than	40τ.	Studying	the	general	2D	disordered	case	would	also	be	of	great	interest.		
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