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Percolation-type phenomena are widespread in physics, mathematics and computer sci-
ence and serve as useful models for many physical problems. Percolation, however, comes in
many types and it can be tricky to identify the precise type that is applicable in a given prob-
lem. Recently Sheinman et al. [1], a group based at the University of Amsterdam, studied
an in vitro experimental cytoskeletal system composed of actin filaments, fascin cross-links
and myosin motors. They observed a beautiful motor-driven collapse of the network into
disjointed clusters. One of their most intriguing findings was that, over a wide range of
experimental parameters, the number ns of clusters of mass s exhibited a power-law distri-
bution: ns ⇠ s�⌧ , with ⌧ ⇡ 1.91 ± 0.06. A key feature of the experiments is the apparent
absence of “enclaves” — clusters fully surrounded by another cluster.

Typically, these enclaves are essential features of percolation clusters in two dimensions,
and closely tied to the fractal nature of those clusters and to the fact that ⌧ > 2 in the
best known class of percolation models, namely the random-bond percolation model, where
⌧ = 187/91 ⇡ 2.05 is the standard 2d value.

To incorporate the observed absence of enclaves into their description of actin remodeling,
Sheinman et al. developed the so-called No-Enclave Percolation (NEP), a lattice-based
model in which enclaves are absorbed into the surrounding cluster. Like the experiments,
the numerics from the Amsterdam group gave a robust ⌧ exponent less than 2. In one
view, this is a cause for concern since physical quantities like the total mass of the clusters,
represented as an integral over all cluster sizes, are then divergent. This raised the question
of whether the size distribution of the model’s clusters was skewed somehow (e.g., to favor
larger clusters over smaller clusters), resulting in an underestimate of ⌧ from a value greater
than or equal to two[3].

Hu, Zi↵ and Deng[4] have examined this model carefully, using both theory and Monte-
Carlo simulations, and have shown that it can be mapped to a problem of holes within a
standard percolation backbone. This mapping successfully gives the same size-distribution
exponent as seen in the NEP model ⌧ = 1.82. Hu, Zi↵ and Deng go further, however, and
make a crucial observation: There is yet another percolation model lurking here — one with
simple holes within a percolation cluster. This model predicts that ⌧ = 1+D/2 = 187/96 ⇡
1.95, where D is the fractal dimension of an ordinary 2d percolation cluster. This value
agrees well with the experimental results for collapsed clusters and strongly suggests that
they have identified the universality class for this system.

The theoretical arguments of Hu et al. are essentially sum rules that stem from two dif-
ferent ways of counting clusters, and they explain how ⌧ exponents less than 2 are a natural
consequence of percolation theory. These arguments were anticipated in the mid-1990s in
a set of papers [5, 6] that dealt with applying analogous sum rules to both ordinary and
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directed percolation, as well as other examples of fractal clusters embedded within other
fractal clusters. The original motivation of that work came from front de-pinning experi-
ments, where the holes in percolation clusters and backbones represented regions between
successive pinned interfaces which could be related to the dynamics of rapid, intermittent
avalanches. In general, there is no divergence problem with ⌧ < 2 since there always a finite
cuto↵ determined by the size of the surrounding cluster (or hole). The holes form a “volatile
fractal” – a system which redefines itself when the size of the outside cluster grows, or when
holes are subsumed into larger holes as the system size grows – a notion that goes back to
work by Herrmann and Stanley on the percolation backbone[7]. One o↵shoot of the study
in [5] was a duality relating systems with ⌧ exponents less than 2 to those greater with ⌧
greater than 2.

This “⌧ duality” relates two completely di↵erent cluster problems (call them problems
A and B) and their ⌧ exponents. The two size-distribution exponents are related as follows:

(⌧A � 1)(⌧B � 1) = 1

As an example, imagine that the clusters in system A are characterized by a size-distribution
exponent just a tiny bit larger than 2: ⌧A = 2+ ✏. The duality formula would imply another
cluster problem in system B with a ⌧ exponent just a bit less than two: ⌧B = 2� ✏ (to first
order). Ordinary two-dimensional percolation is a good example of this phenomenon. There
⌧A ⇡ 2.05, so one would expect a dual problem with a cluster-size distribution described
with ⌧B ⇡ 2 � .05 = 1.95. In fact, the value given by the above relation (⌧B = 187/96) is
precisely that identified by Hu, Zi↵ and Deng to explain the collapsed actin clusters.

Whether one calls these new exponents or a new universality class, or just new twists
on percolation’s known exponents, is beside the point: Hu, Zi↵ and Deng have pointed out
that ordinary percolation continues to show its utility, including tying beautiful experimental
results to sublime theoretical concepts, if only one has eyes to see it.
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