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Crystalline order is associated with the spontaneous breaking of the continuous trans-
lation symmetry of space down to a discrete subgroup i.e. the Hamiltonian of the system
is invariant under continuous spatial translations, but the state is only invariant under a
discrete set of translations. Wilczek proposed an extension of this concept [1] to states that
spontaneously broke time translation invariance - a phase that was dubbed the ‘time crys-
tal.’ Subsequent work established that the ‘time crystal’ could not arise as a stable phase in
thermodynamic equilibrium [2]. Interest in ‘time cystals’ has however been renewed through
insights from the study of non-equilibrium quantum matter. In particular, there is now a
large theory literature (see [3] for a review) on time crystals in periodically driven ‘Floquet’
systems, where discrete time translation symmetry is spontaneously broken to a smaller
subgroup.

Two recent experiments [5, 4] appear to have observed this phenomenology in the lab-
oratory, in disordered Floquet systems, which is the one place that theory suggests such
phenomenology could arise [3]. Of these two experiments, while [5] works with a system of
ten trapped ions, and appears to be well described by the existing theory, the experiment
[4] throws up a conceptual puzzle, which is the focus of this review.

The experiment [4] works with an ensemble of nitrogen-vacancy (NV) centers in diamond.
In the presence of external magnetic field each NV center can be modelled as a two level
system (i.e. a pseudospin), and the ensemble is described by an effective Hamitlonian

H =
∑
i

Ωx(t)S
x
i + Ωy(t)S

y
i + ∆iS

z
i +

∑
ij

Jij
r3ij

(Sxi S
x
j + Syi S

y
j − Szi Szj ) (1)

where ∆i is a random onsite field, rij is the distance between two NV centers, Jij is an
orientation dependent co-efficient for the dipolar interaction, and Ωx,y can be controlled by
the microwave field. The particular experimental protocol in question starts with a state
polarized in the +x direction, applies a microwave field along the x̂ direction Ω = Ωx for a
time τ1, and then a field along the y direction Ω = Ωy for a time τ2 = θ/Ωy. This procedure is
repeated n times (yielding a periodic drive with period T = τ1+τ2). Finally, the polarization
along the x axis is measured at time nT .
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It is observed that for short τ1, and for near perfect τ2 ≈ πΩy, the polarization P (nT ) al-
ternates between positive and negative values, exhibiting 2T periodicity i.e. period doubling
occurs. This effect is of trivial origin - each period implements a perfect π pulse (flipping
the x component of the spins). However, this period doubling occurs because of fine tuning
of τ2, and detuning τ2 slighltly away from πΩy causes the effect to disappear. Remark-
ably, however, increasing τ1 by an order of magnitude (which one would think allows the
spins to precess more) makes the period doubling robust against detuning of τ2, suggesting
emergence (at large τ1) of a robust time crystal phase. A ‘crystalline fraction’ can also be
defined by constructing the Fourier transform of P (nT ) and examining the spectral weight at
ν = 1/(2T ). A refinement of the experimental protocol making use of all three spin states of
the NV center is also able to realize an apparently stable phase exhibiting period tripling i.e.
a Z3 time crystal. However, in my view the experiment is remarkable for the open problems
that it shines a light on.

Firstly, while period multiplication is strongly suggestive of time crytalline order, it is not
conclusive - in particular it does not crisply distinguish a time crystalline phase from trivial
examples such as e.g. a set of uncoupled spins which are rotated every period by 2π/n about
some fixed axis. Sharper diagnostics of time crystallinity do exist in the theory literature - I
mention in particular [6], which introduces an order parameter for time crystallinity in terms
of connected correlation functions of operators that are far separated in a thermodynamically
large system i.e.

lim
|~r−~r′|→∞

lim
L→∞

[〈O(~r, nT )O(~r′, 0)〉 − 〈O(~r, nT )〉〈O(~r′, 0)〉] (2)

where O(~r, nT ) is an operator in the Heisenberg representation at position ~r and time nT ,
and L is the system size. In a time crystalline phase, this spatiotemporal correlator should
be non-zero for operators O that transform non-trivially under time translation by T , but
trivially under some subgroup (e.g. translation by nT with n > 1). This definition does
exclude trivial examples, and includes a thermodynamic limit (as must any definition of
a true phase of matter). However, detection of this spatiotemporal order remains a open
challenge for experiments.

In addition, the experiment throws up a major theoretical puzzle. The theory of time
crystals ([7, 8]) relies on many body localization (MBL) to protect the order [9]. However,
general arguments [10, 11, 12] suggest that a Hamiltonian with 1/r3 terms is ‘too long ranged’
to admit of a locator expansion, and thus (in the conventional understanding) cannot be
localized. The basic argument is due to Anderson, and works as follows [10] - consider a
Hamiltonian with a 1/rα hopping term. In a ball of radius R there are Rd states to hop to,
with a typical energy splitting ∼ R−d, whereas the typical matrix element is 1/Rα. Hopping
occurs if the matrix element exceeds the level splitting. If α < d then one can always find
another state to hop to (for large enough R), and so localization is impossible. The case
α = d is critical according to this argument, but is still expected to delocalize [11]. A
refinement of this argument by Burin [12] states that for two body ‘interaction’ terms that
fall off as 1/rα, it is α < 2d that leads to delocalization, because the number of available
two body rearrangements in a ball of radius R grows as R2d. Both by the Anderson and the
Burin criteria, dipolar interactions in three dimensions should be ‘too long ranged’ to admit
of a localized phase. However, in the theoretical understanding, localization is necessary to
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stabilize the time crystal phase. How then is the experiment observing robust time crystalline
order?

A number of possibilities suggest themselves. The most prosaic explanation is that the
‘long range resonances’ that destroy localization [10, 11, 12] simply are not relevant on
experimental timescales, but would indeed destroy localization (and time crystallinity) on
longer timescales. Alternatively, it is possible that the time crystal phase is inheriting its
stability through physics independent of many body localization - but that would require
the development of a new theoretical picture of time crystalline order. Most exciting to my
mind is the possibility that the obstruction to the ‘locator expansion’ posed by long range
Hamiltonians reflects simply a breakdown of our perturbative theoretical tools, and that the
phenomenon of many body localization itself is more robust than the tools that have been
developed to describe it, such that the experiment can be accurately described using the
‘many body localized’ theoretical formalism. This would then beg the question of what are
the more robust tools needed to describe localization in this setting? A resolution of which
of these explanations obtains will require careful developments of the experiment and the
related theory. Regardless of the particular explanation, the experiment has shone a light on
the continuing deficiencies in our understanding of disordered systems with power law long
range interactions.
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