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The study of spin glasses is perceived by some as hard, controversial, and useless. As a
result, its fundamentals are often relegated to end-of-semester topics, prefaced by forewarn-
ings, and surrounded by scare quotes. That is, when they are mentioned at all. Yet the last
three decades have repeatedly evinced that archetypical glassy systems, such as the random
energy model, the perceptron and p-spin glasses, capture the superuniversality of systems
with rough energy landscapes. Beyond their original purpose as models of matter [1], these
archetypes have found applications in fields in which complex landscapes are ubiquitous, in-
cluding neuroscience [2], structural biology [3], and information theory [4]. And as a result,
physicists familiar with disordered systems have often taken the lead in those fields.

As a counterpart to this expansion, the epistemological differences between physics and
more mathematically formal fields have also been underlined. While using replicas to average
over disorder and identify replica-symmetry breaking can leave some physicists uneasy, it
plainly displeases electrical engineers and probabilists. The remarkable success of the replica
trick as a computational scheme has thus encouraged researchers from well beyond physics
to dedicate substantial efforts to confirming its predictions using alternate constructs. A
number of high-profile results in this area have since come to the fore. Yet despite the
elegance behind the underlying mathematics, they have not had much impact on physics.

The recent article by Auffinger et al. likely bucks this trend. Using the equivalence be-
tween the rough energy landscape of the spherical p-spin model and random Morse functions,
this work relates the Wigner semi-circle law to the number of critical points (minima and
saddle points) in the landscape. More specifically, Auffinger et al. used a generalization of
the classical Kac-Rice formula to compute the k-complexity, Σk(e), which is the logarithm
of the number of critical points of degree k with energy e per spin. Although this result
was already known in the physics literature (see, e.g., Ref. [5] and Fig. 1), the elegance and
rigorousness of Auffinger’s demonstration makes it stand out, and gives a breath of fresh air
to approaches centered on the energy landscape rather than on replicas.

These ideas are potentially fruitful both for research and for pedagogy. From a research
standpoint, it opens up a number of directions. First, it enables first-principle calculations
of the finite-system size dynamics (in the asymptotically large size limit) within the glassy
regime of mean-field models. Second, it formalizes an approach developed for studying
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Figure 1: (left) Zero-temperature k-complexity of the spherical p-spin glass with p = 3.
The energy minima that lie below the threshold energy, eth = −

√
4/3, are exponentially

more numerous than the barriers to putatively leave them, whereas at eth critical points of
all orders are equally numerous. (right) Schematic of the minima in the energy landscape.
Starting from the ground state energy (thick line) and going up, energy minima increase
in number and widen until eth (thin line), at which point essentially all minima become
saddles. A system with e < eth thus clearly remains stuck, whereas one with e ≥ eth finds
many ways out. In other words, it goes from non-ergodic (glassy) to ergodic (liquid) following
the mean-field random first-order transition scenario.

simpler disordered systems (Refs. [6, 7] are unfortunately not cited), which is now being
expanded to complex models beyond traditional spin glasses. Third, it makes possible a
replica-free estimate of the finite-temperature solution of the spherical p-spin model, taking
only harmonic excitations around energy minima into account.

From a pedagogical standpoint, this work is likely even more significant. As Giulio Biroli
demonstrated in a set of lectures he gave during the latest Boulder Summer School, its
approach can be used to teach the elementary concepts behind the physics of disordered
systems without having to toil through the more arcane aspects of the replica machinery [8].
The end result is neither hard nor controversial anymore. Because these ideas are also useful
and spreading quickly, I look forward to encountering (under)graduate statistical mechanics
textbooks that embrace them.

This Commentary was supported by a grant from the Simons Foundation (#454937).
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